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PREFACE

TIROS X was developed and built by the Astro-Electronics Division (AED) of the

Radio Corporation of America for the Goddard Space Flight Center of the National

Aeronautics and Space Administration, under NASA Contract NAS5-3173.

TIROS X was the second of the Series HI-type TIROS satellites to be launched, and

while under development was designated as spacecraft "OT-I". As such, it was

first assembled in March 1964, in a configuration similar to TIROS VII. However,

based on the results of a study directed by NASA and performed by AED, spacecraft

OT-1 was reconfigured in February 1965 to suit the requirements of a near-polar,

sun-synchronous orbit. This reconfiguration was based on the utilization of two

axial-mounted standard TIROS cameras, the addition of a Quarter Orbit Magnetic

Attitude Control (QOMAC) system, and the minimization of any additional modifica-

tions. The reconfigured spacecraft was successfully launched on July 1, 1965, as

TIROS X, the first standard TIROS satellite to utilize a near-polar, sun-synchronous
orbit.

This report, which comprises two volumes, is the Final Engineering Report for the

TIROS X Meteorological Satellite System. The functions of this report are as follows:

(1) To describe the efforts involved in reconfiguring spacecraft OT-1 to suit

the requirements of a near-polar, sun-synchronous orbit.

(2) To provide technical descriptions of the design improvements and the equip-

ment added to the standard TIROS spacecraft configuration and to the basic

TIROS Command and Data Acquisition (CDA) ground stations for the TIROS

X system.

(3) To describe the effects of choice of launch date and launch time on the

operation of the TIROS X system.

(4) To provide technical descriptions of the basic design improvements and

additions made to the standard TIROS system for TIROS X.

(5) To describe the various system and subsystem tests performed during the

TIROS X program.

°°*
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(6) To describe the various environmental tests and calibration tests per-

formed on the integrated spacecraft during the TIROS X program.

(7) To describe prelaunch and launch activities at the launch site, at the TIROS

Technical Control Center, and at the CDA ground stations.

As noted previously, the TIROS X final report is divided into two volumes. Volume I

comprises Parts I through IV. PART I serves as an introduction to the TIROS X

program, and describes the systems concept upon which the program was based,
the launch and orbit considerations, and the photocoverage available with TIROS X.

PART II presents technical descriptions of the satellite subsystems and details the

various phases of testing performed on individual units and systems and on the in-

tegrated spacecraft. PART III covers ground station equipment; while PART IV

covers the preparation and launch-phase operations at the launch site, the TIROS

Technical Control Center, and the TIROS CDA ground stations.

Volume II comprises PART V, which contains a description of both the satellite-

borne and ground-station portions of the command and control subsystem and
that material which is of a classified nature, e.g., data pertaining to command fre-

quencies and programming sequences.

In general, the TIROS X final report presents only brief functional descriptions of

those spacecraft subsystems and subsystem elements which are essentially the

same as their counterparts on previous TIROS satellites. However, greater detail

is given to the design modifications made specifically for TIROS X and to the re-

configuration of the spacecraft for the TIROS X mission. Complete and detailed

discussions of those components which were changed in previous TIROS programs

are described in the respective final reports for those programs.
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PART I. INTRODUCTION

SECTION I. PROGRAM SUMMARY

TIROS X was successfully launched from Cape Kennedy, Florida, by means of a Delta

Rocket, on July 1, 1965. It was the first standard TIROS satellite to be planned for a

near-polar, sun-synchronous orbit, and its launch date was scheduled to provide photo-
coverage for the 1965 hurricane season.

The TIROS X program was performed by AED, under NASA contract NAS5-3173,

utilizing spacecraft OT-1. The spacecraft was originally assembled in the standard

TIROS configuration (almost identical to TIROS VII). At that point the spacecraft

was scheduled to be launched in the second quarter of 1964, into a 400-nautical-

mile circular orbit at a 58-degree inclination. Assembly and debugging were

completed by December 1963; however, in March, 1964, spacecraft OT-1 was
placed in a "Hold" status by NASA directive.

In January of 1965, under the same contract and in response to a NASA request, AED

conducted a study of the feasibility of modifying spacecraft OT-1, with minimal re-

configuration, to suit the requirements of a near-polar, sun-synchronous orbit, in-

cluding an added attitude-control capability (QOMAC system) to increase daily photo-
coverage two to three times over that available with standard TIROS satellites. The

planned orbital altitude and inclination were specified at 400 nautical miles and 98.6

degrees, respectively, to establish the sun-synchronous nature of the orbit and extend

the available photocoverage.

In February, 1965, AED issued a technical plan outlining the necessary changes and

modifications and pointing out the advantages to be gained in extended coverage,

constancy of illumination, and favorable sun angles with the proposed system. Based

on the results of this study, NASA issued Modification 17 to contract NAS5-3173, re-

scinding the "Hold" on spacecraft OT-1 and directing the proposed reconfiguration.

The AED effort on the TIROS X program included the following activities:

(1) Implementation of the TIROS X spacecraft design proposed by AED. The re-

configuration included the following:

(a) the addition of the dual-channel attitude horizon scanner, the solar-

aspect indicator, and the QOMAC system,
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(b) various modifications to existing equipment, including modification of the

camera clocks to increase the remote-picture interval, and

(c) the disconnection of the north-indicator subsystem.

(2) Qualification of the new subsystem elements required for the reconfiguration,
and provision of qualified flight spare units as back-up equipment.

(The subsystems and spare units which were either unchanged or only slightly

modified for the reconfigured spacecraft were requalified. )

(3) Modification of the spacecraft structure and harness, as required for the new

c on figuration.

(4) Integration of the qualified subsystem elements on the modified spacecraft

structure and debugging of the complete assembly, ensuring that the inte-

grated spacecraft met the established specifications.

(5) Environmental testing of the integrated spacecraft to flight-level requirements.

(6) Calibration of the spacecraft's sensing elements to ensure the capability of
accurate attitude-control and photocoverage predictions.

(7) Prelaunch analysis of the orbital elements.

(8) Preparation of instructions for performing the "turn-around" maneuver.

(9) Preparation of instructions for checkout of the spacecraft's functions and

evaluation of the spacecraftVs performance during the initial orbits.

(10) Delivery of the spacecraft, upon satisfactory completion of environmental

testing and final calibration, to the ETR for launch.

(11) Provision of engineering support for the launch effort.

(12) Modification of the TIROS CDA stations and Go/No-Go equipment to ensure

compatibility with previous TIROS satellites.

(13) Preparation of instructions for commanding the satellite to execute specific

attitude-control and data-gathering functions.

(14) Preparation of instructions for receiving and processing data from the space-

craft, and maintaining the ground equipment in operating condition.

(15) Provision of direct engineering support to the TIROS ground stations and TTCC

during the launch and immediate post-launch periods.

I-2



The AED prelaunehand launchphaseresponsibilities culminated with the successful
launch andorbit of TIROSX at 2307ESTonJuly 1, 1965. This document, the final
engineering report on the TIROSX Program, covers the AED effort up until the time
of the launch. Further data on the launch-phaseactivities and subsequentoperation
of the satellite will be presented in theseparate evaluationreport to be issued upon
completion of TIROSX operations.
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SECTION II SYSTEM OPERATION

A. SPACECRAFT DESCRIPTION

The primary operational instruments aboard the TIROS X satellite are two wide-angle

television (TV) cameras, each of which utilizes a slow-scan, 0.5-inch vidicon, sup-

ported by associated control, communication, and recording equipment, and a 2-watt

TV transmitter. The satellite also contains the attitude-control and attitude-measure-

ment devices necessary to achieve the initial satellite orientation and maintain this

attitude during the course of the mission. Telemetry circuits for measuring the
satellite's operating parameters and transmitting these parameters to the TIROS CDA

ground complex are also included. Two beacon transmitters are included in the

satellite to facilitate tracking and to provide two subcarrier channels for the trans-

mission of attitude data, "housekeeping" data, and other telemetry data.

The satellite's operation at remote locations is controlled by means of a command and

control subsystem, which receives, decodes, and stores ground-initiated commands

and activates the satellite components required to execute the commands. Power for

the satellite's electrical components is supplied by means of a solar-energy converter,

comprising 9120 P-on-N silicon solar cells, and 63 nickel-cadmium storage batteries.

The spacecraft structure which is very similar to that of the standard TIROS space-

craft, is 42 inches in diameter and 22 inches in height.

B. DYNAMICS CONTROL AND SPIN-AXIS ORIENTATION

The dynamics-control subsystem provides for (1) controlling the spacecraft's nutation

and spin rate when it is first injected into orbit, (2) establishing the initial orientation

of the spacecraft as soon as possible after injection, and (3) controlling the satellite
attitude and spin rate throughout the mission.

A spin rate of approximately 126 rpm is imparted to the satellite/third-stage rocket

assembly upon separation from the second stage of the launch vehicle. Approximately

1.5 minutes after the combined assembly is injected into orbit and the third-stage

rocket has been turned off, the satellite automatically separates from the third-stage
rocket, maintaining the 126 rpm spin rate. When separation occurs, the lift-off and

separation switches close, an indication of separation is telemetered to the ground,

the precession dampers are automatically activated, and the timing for the automatic

activation of the despin mechanism is initiated. The precession dampers are tuned-

energy-absorption-masses which rapidly damp any components of force occurring at

I-5



separation which might tend to nutate the satellite. Approximately 7 minutes after
separation of the satellite from the third-stage rocket, the despin timer causesthe
firing of a pair of squibs that release the despin mechanisms. The despincables,
with the attachedweights, are wrapped aroundthe satellite, aboutthe periphery of

.......... 1.... ._ _,_ _,,_hl..... w_,_d, _nd with the attached weights, arethe basepiate, wn_11 _._u, _......................... _
cast off from the satellite while absorbing sufficient energy to cause the spin rate to

be decreased to the 8 to 12 rpm range (within approximately 0.5 second).

Though both precession dampers and the despin mechanism are designed for auto-

matic operation, a back-up capability for ground-controlled activation is also available. *

To achieve the desired orbit, the launch sequence and injection conditions were planned

to cause the satellite spin axis, at the point of injection into orbit, to be approximately

in the orbital plane, perpendicular to the line of nodes, and pointing toward the southern

hemisphere. Since the launch time was near the summer solstice, the initial sun angle

with respect to the spacecraft would be unfavorable (i. e., 5/ _ 115 ° ). To achieve mis-

sion mode, there was a requirement for a change of spin-axis orientation after launch,

before picture-taking operations could be initiated; to accomplished such a change,

TIROS X was equipped with a QOMAC system.

The turn-around maneuver is effected by the establishment of known magnetic fields

about the satellite which interact with thc earthVs magnetic field to produce a torque on

the satellite. The satelliteVs magnetic field is generated when current is caused to

flow in one half of the center-tapped QOMAC coil. Quarter-orbit reversals in the se-

lected half of the QOMAC coil are programmed to reverse the direction of the satellite_s

magnetic field according to the satellite's location in the magnetic field of the earth.

The torque produced by the current flow in the QOMAC coil causes the spin axis to

precess toward the desired attitude in a known direction and at a rate proportional to

the dipole field strength. The TIROS X turn-around maneuver is shown in Figure I-1.

On orbit 0001, after nutation damping and despin have occured and the orbital elements

have been determined, the turn-around maneuver is initiated. It is planned to be

accomplished within the first 20 orbits, so that the desired gamma angle will be

achieved and suitable power and thermal profiles for satellite components will be es-

tablished as soon as possible after launch.

The torquing program is initiated at a prescribed time after the ascending node crossing.

With the design of the QOMAC system, the selection of the appropriate starting time

permits positioning the precession vector anywhere in the orbital plane. The preces-
sion axis is, in fact, located essentially midway between the injection position of the

spin axis and the desired position of the spin axis.

*As described in Volume II, the classified supplement to this report.
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TIROS X Turn-around Maneuver

A QOMAC clock is utilized to turn on current to the QOMAC coil. The camera clock

first counts out the time delay, and alarms (as programmed via ground command),

energizing the QOMAC clock which counts out quarter-orbit intervals for switching

the dipole polarity of the QOMAC coil. For the 400-nautical-mile orbit planned for

TIROS X, the QOMAC clock is preset to "count" 24.9-minute intervals, to an accu-

racy within 4 percent.

During the turn-around maneuver, the satellite's attitude is monitored by the TIROS

ground system by means of telemetry data from the solar-aspect indicator and the

attitude horizon scanner. (During this time, the exact orbital parameters are also

determined, along with the status of the tracking and telemetry subsystem, the

command and control subsystem, and other components within the spacecraft. )

The solar-aspect indicator provides a digital-coded measurement of the gamma angle,

the angle between the satellite-sun line and the satellite spin axis. The attitude hori-

zon scanner supplies data from which the spin-axis nadir angle is determined. The

spacecraft attitude, then, is determined from simultaneous measurements of the

gamma angle and the nadir angle, or from a continous analysis of the nadir-angle

function with time.

As the TIROS X mission continues, nadir-angle control by means of the QOMAC

coil is also used to obtain the desired picture coverage. For example, during the
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summer months, an orientation of the spin axis in the orbital plane directed at a 20 °

N declination would yield near optimum coverage of the hurricane belt.

After the desired attitude has been achieved with the turn-around maneuver, the spin

axis is permitted to drift for several days so that the sateiiite:s residual magnetic

dipole moment can be measured. Based on this measurement, a constant torque is

programmed in the MBC coil to negate the residual dipole moment. An additional

torque is then programmed in the MBC coil to compensate for the 1-degree per day

precession rate of the orbital plane in a sun-synchronous orbit.

When long-term observations indicate an attitude drift in a constant direction, the

MBC system is used to offset the tendency to drift, thereby reducing the frequency

with which QOMAC torquing need be applied.

C. CAMERA OPERATION

1. Modes of Operation

Three modes of operation are available with the TIROS X TV-picture subsystem:

direct, remote, and playback.

Direct-picture requests are transmitted to the satellite while it is in contact with the

CDA station. The transmitted command specifies the camera system to be used. The

resultant video signals are read out in real-time, processed, and applied to the

associated frequency-modulated TV transmitter for direct transmission to the ground.

The majority of pictures to be taken during the TIROS X mission, however, will be

remote pictures, since the satellite is within communications range of the CDA sta-

tions for only a relatively short portion of each orbit. While the satellite is in con-

tact with a ground station, the desired start time for a remote-picture sequence is

programmed into the clock associated with the selected camera system, permitting

TV coverage of an area of interest remote from the ground stations.

Pictures taken while the TV-picture subsystem is in the remote mode of operation

are stored on magnetic tape. These pictures are played back and transmitted to

ground when the satellite receives a playback command from a ground station.

The TIROS X camera clocks were modified to increase the remote picture interval

from one picture every 30 seconds to one every 60. Thirty-two remote pictures are

still taken by a camera in one remote sequence, but the change extends the coverage
of each sequence by reducing the excess picture overlap that was obtained on TIROS I

through VII and doubling the length of the swath covered in each sequence.
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2. Direct Mode

To obtain direct pictures, the ground station transmits the designated spacecraft

address followed by the direct camera command for either camera system. Upon

receipt of this command, warm-up power is applied to the selected camera system

for a specified period. At the end of the warm-up period, full operating power is

applied to the selected system enabling the start of picture-taking operations by means

of momentary interruptions in the direct-camera command. (When full operating

power is applied, logic within the spacecraft causes automatic transmission of

"housekeeping telemetry" over both beacon transmitters. ) The interruptions in the

direct-camera command are normally programmed to occur at 30-second intervals,

and result in the actuation of the camera shutter, exposing the vidicon face-plate.

During the 2-second interval following vidicon exposure, the image on the vidicon is

read out, and the resulting video signal is applied to the recorder electronics where

it frequency-modulates a video subcarrier oscillator. The resulting video subcarrier

is applied directly to the activated TV transmitter, by-passing the tape transport.

The resulting F-M/F-M modulated RF carrier is transmitted directly to the inter-

rogating CDA ground station.
t

A direct camera sequence can be terminated either by simply ending the direct-

camera command for a minimum specified period, or by replacing the direct-camera

command with a playback command. In normal operation, the direct-camera se-

quence is terminated by the start of a playback sequence.

The operation of both camera systems is identical, as is the manner of commanding

each for direct operation. However, camera system No. 1 is usually commanded

for a direct sequence before a playback sequence is commanded, while camera sys-
tem No. 2 is commanded after a playback sequence.

3. Playback Mode

The playback mode of operation is employed to permit playback of remotely taken

pictures and to permit setting the satellite clocks for the next remote sequence (or

for a QOMAC sequence). A playback sequence usually follows a direct sequence of

camera system No. 1. However, it can be programmed to occur immediately after

the satellite is addressed. In the former case, the start of playback will not result

in the transmission of housekeeping telemetry; in the latter case, a telemetry readout

will be initiated when full operating power is applied.

As in the case of direct camera operation, a warm-up period is required before the

playback of data will begin. However, this warm-up period can be eliminated when

playback of a camera system follows within a specified period after direct-camera

operation of that same system. The elimination of such warm-up time is important

because of the relatively short satellite-to--ground contact periods.
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Playback operation is programmed by the transmission of a playbackcommandto
either of the twocamera systems. After a playbackcommandhasbeentransmitted
for the proper interval, power is appliedto the selectedtape recorder andrecorder
electronics andto the selected TV transmitter.

Whenpower is applied to the recorder tape transport, playbackcommencesandis
synchronizedby the 500-cpsoutput from the associatedcamera clock. The video
subcarrier is read-out and appliedthrough the tape recorder electronics unit to
frequency-modulatethe associatedTV transmitter.

Whenplaybackof the data is completed, the recorder stops automatically and, since
the tape is erasedduring playback, the unit is ready for the next remote-picture-
taking sequence;the secondcamera system can thenbe commandedfor a playback
sequence.

4. Remote Mode

The remote-picture-taking mode of operation is used for obtaining photocoverage
while the satellite is orbiting over geographic areas out of communications range of

a CDA station. This mode of operation is used to fulfill the majority of the requests

for photocoverage, since the periods during which the satellite can be contacted are

relatively short.

Either or both of the satellite's camera systems can be programmed for remote

operation by setting and starting the associated camera clocks. The setting of the
camera clock associated with a particular camera system is achieved during play-

back of that system by interruption of the playback tone with a series of clock-set

pulses. Depending upon the number of pulses transmitted to the clock, the time

between the starting of the clock and the start of the remote sequence can be varied
from 0 to 5 hours in 2-second increments. After the clocks (or clock) have been set,

they can be started by a command from either a CDA station or the clock-start sta-

tion at Santiago, Chile.

When a satellite clock alarms, the associated TV camera and tape recorder are

enabled and synchronizing signals are applied to both of these units. After the 1-

minute period provided for warm-up of the camera and recorder, the camera clock

supplies a 1-ppm shutter pulse to expose the camera vidicon and a signal to turn on

the tape recorder during each 2-second vidicon-readout period. Remote pictures are
taken at intervals of 60 seconds. At the conclusion of the 32-minute, 32-picture remote

sequence, the clock turns off, removing power from the TV equipment and returning

that equipment to a "standby" status. If the second camera system has also been pro-

grammed for remote operation, the sequence described above will be repeated at the

programmed time and that system will also be returned to "standby". Both camera

systems will remain in the "standby" mode of operation until the satellite is again

interrogated by a CDA station and commanded to play back the stored data.
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D. ATTITUDE MEASUREMENT

As the satellite orbits the earth, the attitude horizon scanner yields an indication of

the spin-axis attitude with respect to the orbital plane (nadir angle}, and the solar-

aspect indicator yields an indication of the spin-axis orientation with respect to the

satellite-sun line (the gamma angle).

The two infrared (IR) sensors in the attitude horizon scanner are independent units

arranged in a "V" configuration; and, as the satellite spins, the optical axis of at

least one sensor traces a conic section taking in both space and earth. The output of

each head is supplied to a beacon transmitter for modulation on the beacon carrier.

As noted, the attitude data is recorded at the CDA stations; and from a comparison of

the earth-scan time to the spin period from one of the two heads, the satellite's atti-

tude can be determined. *

Figure I-2 is a graphic representation of the orbit-attitude relationship of TIROS X

at a number of different orbital positions. The cyclic variation of the satellite's

ORBIT
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FOR MAXIMUM

NADIR ANGLE

SENSOR NO. I

SENSOR ___,._ \ \
' 'i _ ORBIT POSITION

NO. 2 \\ I \ FOR MINIMUM

._ _ NADIR ANGLE

/

/ \ SCANNING CONE

SENSOR NO. I\
t l
I EARTH X

1 SENSOR NO, 2
/

SCANNING CONE

/ ORBITAL PATH

SENSOR NO I

Figure I-2. Horizon-Sensor Scanning Cones with Respect to Earth for
Various Positions in Orbit

*The technique used on the TIROS X system for the determination of spin-axis attitude

is the intersecting cone technique, which has been set-up for use with a computer.

Detailed information on attitude determination is available in the TIROS X and TIROS

IX attitude manuals.
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roll angle as it orbits the earth results in an earth-contact "history" as shown in

Figure I-3 for both sensors comprising the attitude horizon scanner.

The solar-aspect indicator yields a digital-coded measurement of the gamma angle,

i. e., the angle between the spin vector and the satellite-sun vector when the sun is

pl _;-_ by _ _........ *_ _ ........ _............ _ are us _A _nin the role u_.l._u _-_ _, _,_. ,_-,-._-_-a*,_ *,.,_,_,_..._..-_

attitude studies and in power availability studies.

During initial direct or playback sequences, solar-aspect data is automatically ob-

tained during the 28-second warm-up period of the command camera system, and is

applied to the associated beacon transmitter on the commanded side for transmission

to the CDA station. During this 2S-second period, three or four measurements of

the gamma angle will be obtained.

The time period between the leading edges on consecutive measurements of the gamma

angle is an accurate measure of the satellite's spin period. The time period between

consecutive skT-earth transitions in either channel of attitude data can also be used

as the nominal spin period.
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E. TRACKING AND TELEMETRY

The tracking and telemetry operations of TIROS X are performed by means of a

subsystem including two 50-mw beacon transmitters, two 1300-cps subcarrier

oscillators (SCO's}, and two 40-point telemetry switches.

As the satellite proceeds in orbit, beacon signals are transmitted to the ground to

aid the CDA stations in tracking and acquiring the satellite as it enters communica-

tions range.

Beacon transmitter No. 1 operates at 136.23 Mc, No. 2 at 136.92 Mc. Each beacon

carrier is amplitude-modulated by means of a frequency-modulated subcarrier oscil-

lator to provide a means of transmitting attitude and telemetry data to the CDA sta-

tions. Attitude data from the "down-looking" head of the attitude horizon scanner is

applied to beacon No. 1, while data from the "up-looking" head is applied to beacon
No. 2.

When the satellite receives a command for a direct-picture sequence or a playback

sequence, a time-shared series of telemetry data is automatically applied to the

beacon transmitters replacing the attitude data. This data includes "housekeeping"

telemetry, solar-aspect, MBC-switch-stepping, and QOMAC polarity. "Housekeeping"

data can also be programmed by means of a specific command. A dual-channel paper-

chart recorder is located at each CDA station for the recording of the data transmitted

on the beacon signals.

"Housekeeping" telemetry data provides an indication of the status of various satellite

operating parameters. The telemetry signals are obtained in the form of voltage

levels from sampling points within the satellite and are applied to the telemetry

switches, and thence to the associated beacon transmitters.

F. POWER REQUIREMENTS

During the course of the operational life of the satellite, the required electrical

power is supplied by means of a solar-energy converter consisting of 9120 solar cells,

and a battery pack consisting of 63 storage cells. During orbital day, the solar cells

are used as the primary power source for the satellite's electrical system, while the

battery pack is used during the orbital night to supply all power required by the

satellite. In cases where peak-power requirements during orbital day exceed the

power output of the solar cells, the battery pack automatically supplies the power

difference. A patch of 60 solar cells on the top of the spacecraft hat provides telem-

etry indications of the overall condition of the solar-cell array, permitting CDA sta-

tion monitoring of any solar-cell degradation. Each camera system has its own

regulated power supplies which operate at -24.5 volts and -13.0 volts.
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G. ANTENNAS

CDA stations. For transmissions to the grmmd, two dual-frequency, crossed-dipole

antennas and an RF matching and coupling network are utilized. A notch filter is also

included in the antenna subsystem to ensure isolation of the command receivers from

the beacon transmitters.

During a CDA-station interrogation, the RF matching and coupling network couples

the three operating transmitters (one TV transmitter and both beacon transmitters)

to the radiating elements, provides an impedance match for the coupling, minimizes
interaction and feedback between the transmitters, and effects circular polarization

by exciting the elements in phase quadrature.

H. GROUND COMPLEX

The TIROS X system utilizes a ground complex comprising the following facilities:

(1) Two primary CDA (command and data acquisition) ground stations located

at Fairbanks, Alaska, and Wallops Island, Virginia.

(2) A back-up station, used for engineering evaluation studies, located at the

AED Space Center, near Princeton, N.J.

(3) The TIROS Technical Control Center (TTCC), located at NASA's Goddard

Space Flight Center in Greenbelt, Maryland, at which the satellite pro-

gramming for each orbit is formulated and transmitted to the primary CDA

ground stations.

The command programs are transmitted to the satellite from the CDA stations. The

satellite, in turn, transmits TV, attitude, and telemetry data to the CDA stations,

where the data is processed and recorded and transmitted to the TTCC and to the

other facilities associated with the TIROS ground complex.
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SECTION III. ORBITAL CONSIDERATIONS

A. GENERAL

A circular, near polar, sun-synchronous orbit was planned for TIROS X because such

an orbit provides greater picture coverage, consistent target illumination, and more

favorable sun angles. The mechanics of the sun-synchronous orbit are the same as

those of any circular earth orbit, with the unique exception that the orbital plane of

the sun-synchronous orbit revolves around the earth's polar axis in the same direction

and at the same rate as the earth-sun line. This nodal precession results in a nearly

constant angle between the orbital plane and the direct rays of the sun, so that the

satellite's subtrack on the surface of the earth receives nearly the same solar illumina-

tion on every orbit throughout the year.

A sun-synchronous orbit provides a nearly constant gamma angle (the angle at which

the sun's direct rays fall on the satellite) with the advantages of nearly constant,

annual orbital variations in satellite temperature, eclipse time, and energy supply

from the satellite solar-cell array. Furthermore, because the variation in earth

illumination remains nearly the same, the dynamic range of the satellite's camera

systems can be adjusted for optimum performance over a limited illumination range.

B. ESTABLISHMENT OF A SUN-SYNCHRONOUS ORBIT

The geometry of a sun-synchronous orbit is shown in Figure I-4.

The lack of symmetry of the earth's gravitational field causes a gradual precession

of the orbital nodes, westward if the orbital inclination is less than 90 degrees, and

eastward if the inclination is greater than 90 degrees. Since the earth's movement

around the sun produces an eastward movement of the earth-sun line, the inclination

for the TIROS X orbit was set greater than 90 degrees.

The orbital inclination and altitude, together, determine the rate of precession of the

orbital plane. The rate of precession of the earth-sun line is 0.986 degree per day,

and the planned altitude and inclination for the TIROS X mission were set at 400

nautical miles and 98.36 degrees, respectively, to achieve a similar precession rate

for the orbital plane. The TIROS X orbital plane, then, rotates eastward at a rate

1-15



D

W

o_
w a_

w l-

u 0

0

\

\

\

\

\ /
l \ /

I ,'/\
\ //\ \
\ / / \\\\/

\
\
\
\
\

oO
co

©

o

o

o

I

%

o

-4
&

.,..._

1-16



of approximately 1 degree per day, maintaining a constant "o'clock angle", i.e., the

angle between the line of nodes and the line formed by the normal projection of the

earth-sun line in the equatorial plane.

C. ORBITAL PARAMETERS

I. Selection Criteria

The fundamental parameters in the selection of the specific orbital parameters for

TIROS X were the altitude and the time of the ascending node. Most of the other

parameters were, within small variations, the results of the choice of these two

fundamental parameters.

The planned orbit for TIROS X called for the following nominal characteristics:

• shape: circular

• altitude: 400 nautical miles

• inclination: 98.36 degrees

• nodal period: 99.63 minutes

The considerations affecting the choice of an orbital altitude included (1} the use of

the Delta DSV-3C launch vehicle and (2) the fact that a spacecraft launched southward

into a retrograde orbit from the Eastern Missile Range must be guided in a "dogleg"

trajectory around the tip of Florida.

2. Altitude Effects on Spacecraft Operation

Since the spacecraft design for TIROS X is predicated on the 400-nautical-mile orbit,

the choice of altitude affects the area coverage of the TV cameras and picture resolu-

tion, in addition to the operation of the attitude horizon scanner, the solar-aspect

indicator, and the path losses with the TV and beacon transmitters.

At the planned altitude, the number of orbits per day is not an integer; and the satellite,

therefore, does not trace the same lines of longitude on each day. Consequently, the

areas covered by the satellite at specific times on successive days are not identical,

and the pictures taken at those times cover different areas.
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3. Drift Rate of Orbital Plane Precession

At the 400-nautical-mile orbital altitude planned for TIROS X, an inclination of 98

degrees is required to yield a precession rate which will make the orbit sun-

synchronous, i.e., an orbital precession rate of 1 degree per dav. Any error in

altitude or inclination at the point of satellite injection would cause an error in the

precession rate. {Inclination errors would have the greater effect. )

Data obtained from six previous TIROS launches indicated that an average drift in

the precession rate of 0.05 degree per day could be expected and that orbit time

would drift approximately 20 minutes after 100 days.

4. Time of Ascending Node

a. General

The time of the ascending node determines both the angle of the sun's rays rela-

tive to the orbital plane, and the direction in which the satellite travels when it

crosses the equator in daylight. The main influences of the time of the daylight
crossing are on the illumination of the orbital path and on the illumination of the

satellite. Thus, the time of the ascending node affects not only the scene illumination

for picture taking but also two satellite operational characteristics: namely; the

temperature variation of the satellite and the power output of the satellite's solar-cell

array.

The most important consideration in choosing a daylight ascending node crossing

for TIROS X was the speed with which remotely taken pictures would reach a ground

station for processing and use. The location of the TIROS X CDA stations in the

upper part of the northern hemisphere was the determining factor in this consideration.

The time the satellite passes over a ground station is related to the time of acquiring

remote picture sequences from any area of the earth. As the earth rotates on its

axis and the various areas of the world are brought into the sunlight under the satel-

lite's orbital path, the remote pictures of both hemispheres are most quickly acquired

by the CDA stations if the daylight node is an ascending node. A daylight ascending

node is considered particularly advantageous for immediate playback of pictures of

the tropical hurricane regions and of the Near and Far East, Europe, and the Atlantic

Ocean; and, since the TIROS X launch was scheduled to provide coverage during the

1965 Atlantic hurricane season, this was an important consideration.

b. Time of Daylight Crossing

(1) General

The choice of the time of daylight crossing will fix, for a given time of

the year, the gamma angle, which in turn is limited by restraints such as thermal
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considerations andpower availability. The following details the factors limiting
the choice of gammaangleandthe effect of the time of daylight crossing on the gamma
angle.

(2) Factors Affecting Choice of GammaAngle

(a) Thermal Considerations

Thetemperature limits for TIROSX were considered to be as
follows:

• on the spacecraft top andsides: 85°C

• on the spacecraft components: -10°C to + 35°C.

The 35°C level was consideredthe limit for spacecraft components
becauserapid chemical degradationof thebatteries can occur at temperatures above
this level.

Figure I-5 is a polar plot showingthe relationship betweengamma
angle andtemperature level for both the spacecraft top andsides andthe spacecraft
components.* It canbe seen from this graphthat the 35°C thermal limit specifies the
20 to 70degree range for acceptablegammaangles for long-term mission operation.

(b) Power Availability

Figure I-6 is a polar plot showingthe relationship betweengamma
angle andpower outputof the TIROSX solar-cell array. The shapeof this curve
reflects the changein total power outputof the array as the projected solar-cell area
charges with eachgamma-anglevalue. The reference curve for the typical load
assumes 70 ampere minutes of power are required from the array oneachorbit to
maintain the capability to obtain andplaybacka complete 32-picture remote sequence
while avoiding excessivebattery discharge. (A value of 80percent for the charge/
discharge efficiency of the batteries is also assumed.)

As canbe notedin Figure I-6, from power-supply considerations
alone, thegammaangleis limited to avalue in the range 0 to 90degrees (whichex-
cludes the marginal values from 90 to 105degrees).

(c) CameraOperation

Figure I-7 is a polar plot showingthe maximum field-of-view of the
TIROSX TV cameras. As canbe notedin this Figure, this field-of-view is 104.8
degrees; andthe rotating satellite "sweepsout" a cone of a 52.4-degree half angle,

*For this analysis, componentpower dissipation, Qc, hasbeenassumedto be 25
watts.
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centered about the 180-degree point. If the gamma angle is above 128 degrees, the

sun will be within the field-of-view of the cameras; the sun's rays will then be

continuously impinging on the camera lenses and, if picture-taking is commanded,

the resultant video will tend to "wash out. " In addition, if the sun is within the

field-of-view of the cameras, thermal problems in the lens and shutter must be
considered.

(d) Attitude Measurement

The TIROS X attitude horizon scanner comprises two independent

IR sensors mounted on the baseplate at an included angle of 80 degrees. Sensor

No. 1, the "up-looking" sensor, is mounted with its optical axis at a 50-degree

angle to the satellite spin axis; sensor No. 2, the "down-looking" sensor, at a
130-degree angle.

When scanning space, both sensors will experience sun inter-

ference which could be severe enough to distort or completely obscure the horizon-

crossing indications in the attitude data. Sensor No. 1 is equipped with a sun filter

because, as can be noted in Figure I-2, this sensor will be "looking" into space more

often than sensor No. 2. As shown in Figure I-8, for sensor No. 1, there is a 10-

degree range, centered about the optical axis, within which the sensor can experi-

ence sun interference equivalent to the minimum earth signal; for sensor No. 2, this

range is 32 degrees. The use of the sunfilter on sensor No. 1cause the difference in the

possible-interference ranges between the two sensors. The sun filter attenuates

the response of the sensor to the earth signal, but attenuates the response to the sun

to a much greater degree.

The interference ranges about the optical axes of the sensors, i.e.,

the range from 45 to 55 degrees for sensor No. 1 and that from 114 to 146 degrees foI

sensor No. 2, must be avoided to prevent sun interference on the TIROS X attitude
data.

(e) Summary

From the foregoing it can be observed that the mission-mode

gamma angle on TIROS X should fall between 20 and 70 degrees, avoiding the range
between 45 and 55 degrees, if possible, to avoid sun interference on attitude data

from attitude sensor No. 1. Gamma angles above 70 degrees are undesirable

because of thermal constraints, sun interference with attitude sensor No. 2 data,

power-supply restraints, and camera-lens considerations. Similarly, gamma

angles from 0 to 20 degrees are undesirable because of thermal constraints.
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SECTION IV. PHOTOCOVERAGE FOR THE TIROS X MISSION

A. DYNAMIC COVERAGE

The Northern Hemisphere was of primary interest to the TIROS X mission because

of the land masses located in this hemisphere and because of the locations of the

TIROS CDA stations. The two primary CDA stations in the TIROS X program

are located at Fairbanks, Alaska, and Wallops Island, Virginia.

To enable convenient visualizing of the orbital track of the satellite on the earth's

surface (both Northern and Southern Hemispheres) with respect to the camera

coverage and illumination boundaries, a sub-satellite point ephemeris for three

successive orbits at an altitude of approximately 400 nautical miles has been

superimposed on a Mercator projection of the earth and presented in Figure I-9.

In this figure, the sub-satellite-point locations in 2-minute intervals are indicated

by a series of marks, and for reference, the two primary CDA stations and their

5-degree contact circles are also indicated.

B. SCENE ILLUMINATION

Due to the spherical shape of the earth, the solar elevation angle varies with

latitude for a given time of year, and because of the tilt of the earth's axis with

respect to the'ecliptic, this variation changes as the earth moves around the sun.

The time of the nodal crossing determines the change in solar-elevation angle along

the orbital track, as well as the annual variation in solar-elevation angle at any
specific point along the orbital track.

The elevation angles along the satellite subtrack at the solstices and at the

equinoxes are shown for a 1400-hours ascending nodal crossing in Figure 1-10 and

for a 1500-hours ascending nodal crossing in Figure 1-11. The plots are the same

as for a 1000-hours and a 0900-hours descending node, respectively. From these

curves it is apparent that higher illuminations of the sub-satellite point result from

the 1400 (1000) hours nodal crossing. Even higher values would result as a "high-

noon" nodal crossing is approached. However, these higher values would be obtained

at the cost of relatively "warm" satellite temperatures and lowered energy output of
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the satellite solar array. Furthermore, it would be necessary to "adjust" the dy-

namic range of the camera system to compensate for a wider variation of light input.

Since the dynamic range for the camera system is a constant, the only "adjustment"

that could be made would be to accentuate the higher brightness levels at the expense

of the lower brightness level,q.

Since storm coverage is an important consideration, the solar-elevation angles be-

tween latitudes 5 ° N and 45 ° N were considered. During the months of (approximately)

June through November, the hurricane activity is primarily in the northern hemisphere

and lengthening the viewing time over this area is desirable.

Another important consideration with regard to illumination is the total distance along

the orbital subtraek over which the solar elevation angle is greater than 15 degrees.

The value of 15 degrees is used as a minimum solar-elevation angle for obtaining

useful pictures. As can be seen in Figures 1-10 and 1-11, this distance is not signifi-

cantly different at the equinoxes or at the solstices for the 1400 and 1500 hours nodal

crossings.

The 15-degree solar-elevation-angle boundaries for an orbit with a 1500-hours as-

cending node are plotted in Figure 1-12 for an entire year. Such an orbit offers de-

sirable overall illumination characteristics and good duration of illumination of the

northern hemisphere. The curve in the center of the illustration indicates that, for

this orbit, the variation in ground sunlight time over the course of the year is only

slight.

C. SCENE COVERAGE

Projections of the TIROS X field-of-view upon the earth's surface are shown in Figure

1-13. The particular conditions illustrated are for an orbit with a 1430-hours as-

cending node, and a NON location of 20°S (Winter). As an arbitrary choice for purposes

of the illustrathm, the midpoint of the 32-minute camera sequence has been centered at

20°S. The particular cases illustrated are for camera-center zenith angles of 42 ° ,

27 ° , and 0 °, which are represented at 70°S (and 40°N), 47°S (and 6°N), and 20°S,

respectively. Due to the spinning of the satellite and the axial configuration of the

cameras, the direction of view tends to vary from picture to picture in the same man-

ner as on all standard TIROS satellites.

D. LATITUDE COVERAGE

From a brief survey of geographic locations of storms, hurricanes, typhoons, etc. ,

occurring from June through September, it can be seen that the major area of interest
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for picture coverage is in the northern hemisphere between the 5 ° and 45 ° latitudes.

In the case of a 1500-hours ascending node, the optimum camera coverage would

be obtained with a minimum nadir angle occurring at 20°N latitude.

Based on the time dependence of the locations of storm centers, the spin axis could

be tilted down, toward 20°S latitude in November, to cover the southern hemisphere,

and in the following May, reoriented for covering the northern hemisphere. This

procedure would offer the advantage of following the solar-illumination patterns.

E. GROUND-STATION CONTACT

The command and data acquisition range of each of the TIROS CDA ground stations

was shown in Figure I-9 by the 10-degree elevation contact circles of the antennas at

the respective stations.

The minimum command time required by both the Wallops Island and the Fairbanks

stations is approximately 4.5 minutes. This allows sufficient time for satellite

address and warm-up (approximately 46 seconds) and readout of a complete remote

sequence plus clock-set for the following sequence (approximately 2 minutes). Under

best conditions, the maximum command time available to the interrogating CDA station

will be approximately 10 minutes.

On a typical day during the operational life of TIROS X, the Wallops Island station,
alone, will be able to command the satellite on three orbits, and the Fairbanks

station, alone, will be able to command the satellite on eight orbits. In addition,

there will be one orbit on which either CDA station will be able to acquire the satel-

lite, but because of the elevation angle neither will be able to command it; there will
also be a three consecutive orbits on which no contact with the satellite will be

available.
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PART II. SATELLITE DESIGN AND TESTING

SECTION I. DESIGN OF SATELLITE COMPONENTS

A. INTRODUCTION

The decision to reconfigure spacecraft OT-1 to meet the requirements of the TIROS X

mission involved adapting a spacecraft which was originally planned for an orbit with a

58 ° inclination to a configuration which could be used in a near-polar, 98 ° inclination
orbit.

As originally assembled, spacecraft OT-1 was a standard TIROS spacecraft, and as

such was very similar to TIROS VII. The modifications made to spacecraft OT-1

were initiated after assembly and debugging had been completed for the original con-

figuration, and the modifications were planned so as to involve a minimal effort.

In the original configuration, dummy weights had been substituted for the IR equipment

such as had been used on TIROS VH. The final configuration also included dummy weights

for this equipment, but because of the new layout it was necessary to relocate the weights

on the spacecraft baseplate.

In addition, the north-indicator subsystem was electrically disconnected in the recon-

figuration, though, to facilitate balancing of the spacecraft, the subsystem equipment

was not physically removed.

The equipment added to the spacecraft in the reconfiguration included (1) a second, in-

dependent IR sensor, which together with the sensor already on the spacecraft, con-

stituted the TIROS X attitude horizon scanner, (2) the OOMAC system, i.e., OOMAC

coil, clock, and control unit, and (3) a digital solar-aspect indicator. These new equip-

ments were added to increase the attitude-control capabilities on TIROS X, and were
based on units proven in use on TIROS IX.

Figure II-l* presents a logic diagram of the final configuration of spacecraft OT-1. The

basic information-gathering equipment on the spacecraft comprises a standard TV-

picture subsystem, consisting of two wide-angle camera systems. In addition, the

spacecraft includes the following subsystems:

*Because of its size, this illustration is placed at the end of this volume.

II-1



• the command and control subsystem,

• the tracking and telemetry subsystem,

• the reIerence-indicator subsystem,

• the dynamics-control subsystem,

• the power-supply subsystem, and

• the antenna subsystem.

Various modifications to existing equipment on spacecraft OT-1 were also made as part

of the reconfiguration. The most significant of these was on the camera clocks,

changing the interval between successive pictures in a remote sequence from 30

seconds to 60 seconds. With this change, the length of a 32-picture remote sequence

was doubled, i.e., from 16 to 32 minutes, extending the coverage of each sequence

and eliminating excessive overlap between successive pictures.

Other changes and modifications made to spacecraft OT-1 for the TIROS X program

are detailed in the following descriptions of individual subsystems.

The physical dimensions of all TIROS satellites, including TIROS X, are the same,

i. e., a TIROS satellite is an 18-sided polyhedron with a height of 22 inches and a
diameter of 42 inches.

B. TV-PICTURE SUBSYSTEM

1. General

The TV-picture subsystem comprises two identical camera systems, each including

a 1/2-inch vidicon camera and associated electronics, two tape recorders, and two 2-
watt TV transmitters.

A block diagram of the TIROS X TV-picture subsystem is contained in Figure II-2.

Two picture-taking modes are available with the camera systems: direct and remote.

In the direct mode of operation, TV pictures are taken in direct response to ground

command and are transmitted directly to the ground station initiating the direct-picture

command. Remote operation is employed for gathering cloud-cover information over

areas where the satellite cannot be contacted by a ground station. In this mode of

operation, pictures are taken in response to commands previously programmed into

the camera clock associated with the selected camera system. Pictures taken while
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Figure IT-2. TIROS X TV-Picture Subsystem, Block Diagram

the TV-picture subsystem is in the remote mode of operation are stored on magnetic
tape. These pictures are played back and transmitted to ground when the satellite

receives a Playback command from a TIROS ground station.

The TV cameras utilize a ruggedized 1/2-inch vidicon designed especially for satel-

lites The useful frame area of the vidicon faceplate is 1/4 by 1/4 inch. A crossed-

line reticle marks the center of the vidicon, and corner lines are inscribed as addi-

tional references. The vidicon is exposed for each picture by means of a solenoid-

operated focal-plane shutter. The electrical output is coupled through a preamplifier

to a video amplifier. The output of the video amplifier is frequency-modulated on an

85-kc subcarrier, then either recorded on magnetic tape or transmitted to the ground,

depending on the mode of operation. Some of the more significant characteristics of

the TV cameras are presented in Table H-1.

The tape transport mechanism in the TIROS tape recorders was developed especially

for satellite operation, from the _tandpoint of weight and power consumption as well

as electronic performance. While recording, the mechanism operates only when in-

dividual photographs are being recorded; during playback, each recorder runs con-

tinuously in the playback direction until all the tape is transferred to the storage reel

and an automatic end-of-tape switch is actuated, preparing the unit for the next record

cycle. The tape is erased immediately after playback and again passes the erase head

(in the other direction) just before recording.
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TABLE II-1. CHARACTERISTICS OF TIROS X TV CAMERAS

Lens Manufacturer

Lens Angle

Lens Relative Aperture

Shutter Speed

Lines per Frame

Vertical Sweep Duration

Video Bandwidth

Power Consumption (Average)

Weight

Elgeet

104 °

f/1.5

1.5 msec

500

2 sec

62.5 kc

9 watts

6.5 pounds

2. Functional Description

a. TV Cameras and Camera Electronics

Figure II-3* presents a logic diagram of a TIROS X TV camera and camera-

electronics unit. The standard TIROS TV camera, such as those in the TIROS X TV-

picture subsystem, utilizes a focal-plane, travelling-slit shutter, driven by a moving

coil in a magnetic field. The shutter blade is accelerated quickly, travels across the

face of the vidicon at nearly constant speed, and is stopped at the end of travel by a

silicone-rubber bumper. The exposure time is nominally 1.5 milliseconds.

A vertical-deflection sawtooth waveform is generated at a rate of 0.5 pulse-per-

second. The amplified vertical-deflection voltage is applied to the vertical winding

of the yoke. Centering and size controls are included to permit the position of the

scanned area to be changed to accommodate the individual vidicon being used.

The vidicon power supply contains a regulated de-to-de converter to provide high

voltages and a current regulator for the focus-eoil and filament currents. The supplied

voltages are minus 20 and minus 30 volts for the eontrol grid, 20 to 30 volts for the

target, 250 volts for electrostatic focus, and 300 volts for grid No. 2. A eurrent reg-

ulator supplies 100 milliamperes, :L1 percent, for the magnetie-foeus coil and the

*Because of its size, this illustration is placed at the end of this volume.
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vidicon heater, which are connected in series. The remaining bias voltages and pre-

amplifier heater and plate voltages are obtained directly from the satellite's solar-

conversion power supply.

A beam-current regulator is included to ensure that the intensity of the scanning

beam remains relatively constant and is unaffected by factors such as vidicon aging,

or ion contamination. The regulator performs its function by changing the voltage

applied to the control grid of the vidicon whenever there is a tendency for the beam
current to change.

b. Tape Recorders

(1) General

Each of the TIROS X magnetic tape recorders consists of a tape trans-

port (R1), a signal-electronics unit (R-3), and a power-electronics unit (R2). The

power-electronics unit contains the end-of-tape logic circuits. The purpose of this

unit is to provide operating power to the tape transport during record and playback

sequences. The tape transport and the signal-electronics unit function as an integral
component during record and playback.

The tape transport consists of two coaxial reels, a capstan, and an idler

mounted in a triangular configuration. The capstan and idler are angled and guide the

tape as it moves from the plane of one reel to that of the other. A constant-tension

spring assembly between the reels maintains uniform tape tension regardless of the

amount of tape on each reel. The capstan is belt-driven by a synchronous hysteresis

motor. Recording is performed by means of RCA-VR502 heads, and playback by

means of RCA-VR402 heads. A permanent magnet provides the erase capability.

The tape transport contains a polyester tape 1.5-mil thick, and 0. 375

inch wide, and operates at a tape speed of 50 inches per second. The power require-

ments for the signal-electronics are (1) in direct operation: 24.5 vdc, 45 ma; (2) in

playback operation: 24.5 vdc, 10 ma; and (3) in record operation: 24.5 vdc, 40 ma.

The power requirements for the power-electronics are (1) in playback operation:

26 vdc, 0.9 ampere; and (2) in record operation: 26 vdc, 0.9 ampere. (The power-

electronics unit is not used when the camera system is operating in the direct mode. )

(2) Direct Mode

Figure H--4* is a logic diagram of the TIROS X tape recorder. During

direct operation, the signal-electronics unit is enabled by operating power from the

TV camera and command-control unit for the selected camera system. Power from

*Because of its size, this illustration is placed at the end of this volume.
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the TV camera is applied to the 10-kc gated oscillator, emitter follower, and fast

rise-time circuit. The fast rise-time circuit is enabled during the 2-second readout

period and applies operating power to the modulator and head drivers. Power from

the command-control unit is applied to the mixer and amplifier-limiter.

DC video signals from the camera are applied through an emitter follower

to the video modulator circuit, where the amplitude variations of the video signal pro-

duce frequency variations of an 85-kc subcarrier oscillator. The composite video

signal, a frequency-modulated signal, is applied through the amplifier-limiter to

frequency-modulate the TV transmitter. *

(3) Record Mode

During the record cycle, i.e., remote operation, picture regulated power

from the TV camera is applied to the 10-kc oscillator, emitter follower, and, during

each readout period, through the fast rise-time circuit to the modulator and head

drivers. Also during remote operation, unregulated power is applied to the power-

control circuit of the power-electronics unit, by means of the associated camera

control unit.

Nominally one second before the vidicon shutter is actuated, unregu!ated

power is applied through the power-control circuit of the power-electronics unit to the

500-cps converter. This converter is synchronized by the 500-pps output of the time-

base generator (in the camera clock) and supplies a 500-cps, 440-volt squarewave

through the motor-reversing relay to the synchronous motor of the tape transport.

Because the motor-reversing relay is de-energized during record, the squarewave

applied to the motor windings causes the tape transport to move in the record

direction.

The composite video resulting from vidicon readout is applied through the

emitter follower to the modulator and produces frequency variations in the 85-kc sub-

carrier oscillator. This FM signal is then applied through the head driver to the video

record head of the tape recorder.

At the end of the record period, the fast rise-time circuit is disabled and,

in turn, disables the modulators and head drivers. Also, unregulated power is re-

moved from the power-electronics unit, causing the tape transport to halt operation

until 1 second before the next shutter trigger. When the overall remote sequence ends,

regulated power is removed from the signal-electronics unit, causing the tape trans-

port to stop. When the overall remote sequence ends, regulated power is removed

*The 10-kc oscillator for channel 2 of the recorder was used on TIROS VII with the

north-indicator subsystem, but is not used on TIROS X; the composite video

signal is, therefore, free of the 10-kc carrier.
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from the signal-electronics unit, the recorder power control is switched to playback

and all three components of the tape recorder remain disabled until the start of

playback.

(4) Playback Mode

During the playback mode of operation, operating power is applied to the

tape recorder from the command-control unit. Playback unregulated power is applied

to the power-electronics unit and enables the 500-cps converter and energizes the

motor-reversing relay. With the relay energized, the 500-cps signal from the con-

verter is coupled to the motor winding and causes the motor to run in the playback
direction.

The data recorded is read out by the video-playback head and amplified

in the playback amplifier before being applied to frequency-modulate the TV trans-

mitter signal. The video signal is amplified by the amplifier-limiter and is applied

to frequency-modulate the TV transmitter.

When tape playback is complete, an end-of-tape signal is sent from the
tape transport to the power-electronics unit. This switches the recorder to the re-

cord state and interrupts playback power to the motor; consequently, the tape trans-

port stops. Because the tape is erased as it is played back, the tape recorder is

ready for the next remote sequence.

c. TV Transmitters

The TV transmitters used on TIROS X are 2-watt units identical to those used on

TIROS VII. Figure II-5 is a block diagram of the 2-watt TV transmitter. The signal

from the TV camera is an amplitude-varying signal obtained from the camera vidicon

with frequency components from 0 to 62.5 kc. This video signal frequency-modulates

an 85-kc voltage-controlled oscillator (VCO) up to ±15 kc. This constant-amplitude,

frequency-modulated video subcarrier then frequency-modulates the video transmitter

The result, then, is an FM/FM video signal for transmission

SU BCARR I ER'--D,_ RF

INPUTt MULTIVIBRATOR MIXER MIXER AMPLIFIER OUTPUT

Figure II-5. IV Transmitter, B]ook Diagram

2.25-Mc VCO _-130 kc.

to the ground stations.

I CRYSTAL

OSCILLATOR
QUADRUPLER
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3. Testing

a. TV Cameras

Camera No. 1, Serial No. 3-201-01, and its associated electronics unit, Serial

No. 3-203-01, were successfully subjected to a vibration test on September 10, 1963.

During a post-vibration check on September 14, 1963, it was determined that vidicon

F-1 had developed an open heater. A new vidicon was installed and the camera was

successfully re-vibrated on September 19, 1963. Camera No. 1 and its electronics

were subjected to thermal-vacuum testing from September 19 through September 22,

1963, with satisfactory results.

Camera No. 2, Serial No. 3-202-02, and its associated electronics unit, Serial

No. 3-203-02, were successfully subjected to a vibration test on September 22 and 23,

1963. The post-vibration check revealed that vidicon F-2 had developed tube spots.

After replacement of the vidicon, the camera and electronics successfully passed a

second vibration test on September 27, 1963. A thermal-vacuum test on the camera

and electronics was performed from October 3 through 6, 1963, with satisfactory

results.

b. Tape Recorders

(1} Camera System No. 1

The recorder transport, Serial No. 3-301-02, underwent vibration

testing on August 29, 1963, and thermal-vacuum testing from September 12 through

15, 1963, with satisfactory results. The units were modified with the new end-of-

tape leaders in April 1965, after the unit was initially delivered for integration on

spacecraft OT-1. (The new leaders were first added to the TIROS IX recorders.)

The tape recorder power converter, Serial No. 3-302-03, underwent

vibration testing on September 5, 1963, with satisfactory results, and thermal-

vacuum testing was successfully completed on September 2 8.

The tape recorder signal electronics, Serial No. 3-303-03, successfully

completed vibration testing on August 20, 1963, and thermal-vacuum testing on

September 2, 1963.

(2} Camera System No. 2

The recorder transport, Serial No. 3-301-01, successfully completed

vibration testing on August 22, 1963, and thermal-vacuum testing on August 29, 1963.

The modified end-of-tape sensors were incorporated in April 1965. after the unit was

initially released for integration on spacecraft OT-1.

II-8



The tape recorder power converter, Serial No. 3-302-01, successfully

completed vibration testing on August 21, 1963, and thermal-vacuum testing on
August 31.

The tape recorder signal electronics, Serial No. 3-303-01, successfully

completed vibration testing on August 19, 1963, and thermal-vacuum testing on
September 2.

c. TV Transmitters

TV transmitter No. 1, Serial No. 3-401-07, was successfully subjected to vibra-

tion testing on January 30, 1964. On February 5, the unit completed thermal-vacuum
tests with satisfactory results.

TV transmitter No. 2, Serial No. 3-401-04, successfully completed vibration

tests on November 14, 1963, and thermal-vacuum tests on November 20.

d. TV Transmitter Filters

The TV transmitter filters, Serial Nos. 3-402-02 and 3-402-03 successfully com-

pleted vibration testing on August 30, 1963, and thermal-vacuum testing on
September 17.

e. DC/DC Converters

The DC/DC converters, SerialNos. 3-702-01 and 3-702-05, successfully com-

pleted vibrationtests on July 18, 1963, and thermal-vacuum tests on July 26.

C. COMMAND AND CONTROL SUBSYSTEM

The material on this subsystem is contained in Volume II, the classified supplement
to this report.

D. TRACKING AND TELEMETRY SUBSYSTEM

1. General

The TIROS X tracking and telemetry subsystem includes two beacon transmitters,

which operate at 136.23 Mc (beacon No. 1) and 136.92 Mc (beacon No. 2). A con-

stantly powered 1300-cps subcarrier oscillator (SCO) is associated with each trans-

mitter. The subsystem also includes two telemetry switches which sample 39 data

points each, at a nominal sampling rate of 0.8 seconds per point. The switches
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sample the same data points, but in differing sequence, and the resulting telemetry

is designated "housekeeping" telemetry. Figure II-6 presents a block diagram of the

TIROS X tracking and telemetry subsystem.

The following time-shared series of operational data is transmitted to the CDA ground

stations by means of the beacon transmitters: attitude data, solar-aspect data, "house-

keeping" data, OOMAC-dipole-polarity data, and MBC (Magnetic Bias Control)-switch

position data. A summary of TIROS X telemetry data is presented in Table H-2.

During the initial launch period, the beacon No. 2 (136.92 Mc) SCO is biased to approx-

imately 1400 cps as an indication that the lift-off switches are closed. As soon as the

satellite separates from the third-stage rocket, the lift-off switches open and the SCO

returns to a center frequency of 1300 cps.

As shown in Figure II-6, the TIROS X attitude horizon scanner is composed of an

"up-looking" sensor (No. 1) and a "down-looking" sensor (No. 2). Attitude data from

each sensor is continuously applied to the associated SCO and beacon transmitter,

except during the intervals noted below.

TABLE II-2. SUMMARY OF TIROS X TELEMETRY DATA

{- .

Telemetry

_)lar Aspect Angle

"ttou sekeeping"

M BC b\vitch

Position

QOMAC Coil

l)ipole Polarity

Attitude 1[o ri/,on

_eann(,r

Li ft-O ff Sw itch

* Approximate wHuc

Telemetry Voltage Range

(volts)

Binary "l" : 0

Center Frequency: -1.25"

Binary "0": -2.50

:t2.5*

(Both Channels)

0 to -2.5

±2*

(Both Channels)

-2.5

SC() Frequency

(cps)

1310"

i350"

1400"

1200 to 1400"

i

1300 to 1400"

t300

1310"

1317"

1200 to 1400'

(Both Channels)

1393"

Time of ()ccurence

7

lMring warm-up of commanded

"side" when satellite is illum-

inated by sun and 0 :: y " 128 °

After warm-up of (either)

commanded "side"

Upon command for stepping of

MBC switch

No Q()MAC Cycle

Positive I)ipole in QOMAC Coil

Negative I)ipole in QOMAC Coil

Interrupted on Doth channels for

"housekeeping" telemetry and

on either channel for solar-

aspect or MBC switch position

data

Until satellite has separated

from third-stage rocket

l)uration

30 sec*

32 sec*

Duration of

Attitude Tone

I Approx 25min each

Continuous

Orbit 0000"*

only

**Orbit 0000 is defined as occurritkg between the time the satellite is ejected into orbit and the time of

the first ascending node
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While a commandfor stepping of the MBC switch is being sent to the satellite, attitude-

horizon-scanner data is removed from the beacon on the commanded "side" and re-

placed with MBC-switch telemetry. For each position of the MBC switch there is a

specific associated magnetic dipole produced in the MBC coil; and, consequently, there

is a specific telemetry voltage associated with each switch position. The solar-aspect

indicator is energized and the resultant data coupled to either beacon transmitter at the

initiation of the warm-up period of the associated command "side". During the warm-

up period, three or four separate measurements of the gamma angle can be made by

the solar-aspect indicator.

The two telemetry switches are automatically energized immediately after warm-up of

either command "side, " or upon a telemetry command from a CDA station; and "house-

keeping" telemetry from each commutator replaces the attitude data on the associated

beacon while the 39 data points are being sampled. Table II-3 presents the channel as-

sigmnents for each of the TIROS X telemetry commutators.

When a QOMAC-eoil operating cycle is programmed, the attitude-horizon-scanner data

on beacon No. 1 is biased, according to the polarity of the OOMAC dipole, for the dur-

ation of the cycle. As indicated in Table II-2, a positive dipole in the QOMAC coil will

cause the attitude data to be shifted from a normal center frequency of 1300 cps to

approximately 1310 eps; a negative dipole will cause the data to be shifted to approxi-

mately 1317 cps. When the QOMAC cycle is completed, the center frequency returns

to 1300 cps.

2. Equipment Description

a. Beacon Transmitters

The TIROS X beacon transmitters are solid-state units which operate at 136.23 Me

(beacon No. 1) and 136.92 Me (beacon No. 2), each with a power output of 50 milliwatts.

The transmitters are crystal-controlled, with a carrier frequency stability of 0. 005

percent.

The power input to the beacon transmitters is supplied at -24.5 volts de, and the

output signal from each unit is an amplitude modulated RF signal. The use of ampli-

tude-modulation of the beacon carriers ensures the presence of the RF carrier for

tracking operations and the absence of sideband components within 1 ke of the carrier

(as necessitated by the requirements of the NASA Minitrack network).

b. SCO's

The two SCO's utilized in the TIROS X telemetry and tracking subsystem are solid-

state units operating on IRIG Channel No. 5 {1300 cps). The specifications for these
units are as follows:

Deviation ±7.5%

Deviation bandwidth, DBW 15% of F
e
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Input impedance 750 kilohms, minimum

Input sensitivity

Output impedance

0 to -5.0 VDC with -2.5V producing F
C

50 kilohras, maximum

Linearity +0.25%

Distortion Less than 1%

Amplitude modulation 1.0db

Output voltage Adjustable from 0 to 1.5 volts peak-

to-peak into an 8 kilohm load

Supply voltage -24.5 VDC (20 ma)

Supply voltage stability Internal regulator limits F c deviation
to less than 0.15% DBW-per-volt

change in input voltage

F drift, long term
C

Temperature stability

Less than ±1% of DBW at 22°C

F c stable within ±1.5% DBW over
temperature range of -20°C to +85°C.

c. Telemetry Switches

The TIROS X telemetry switches are identical to the units used on TIROS VII.

The 40 positions covered with each switch include 39 data points and a 'home" position,

and the points are sampled at a nominal sampling rate of 0.8 second per point. Each

unit operates at an average input power of 100 milliwatts, and a supply voltage of

-24.5 volts dc (2.5 amperes, peak). As can be noted in Table II-3, the channel as-

signments for each switch include four sampling points which provide calibration volt-

ages as a means of facilitating the interpretation of "housekeeping" telemetry data.

3. Testing

a. Beacon/SCO Assemblies

The beacon transmitters and the SCO's were purchased from commercial manu-

facturers by AED. These units were subjected individually to qualification testing by

their manufacturers. After being subjected to bench testing at AED, the units were

integrated into the beacon/SCO assemblies and subjected to qualification testing before

being released for integration with the spacecraft.
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TABLE 11-3. TIROS X TELEMETRY COMMUTATOR CHANNEL ASSIGNMENTS

Telemetry Commutator No. I

Switch (136.23-Mc Beacon)

Position

No. Parameter

1

2

3

4

5

6

7

8

lO

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

3O

31

32

33

34

35

36

37

38

39

4o

Calibration: -2.5 Volts

QOMAC Clock Power

Calibration: -1.0 Volt

QOMAC Sync Pulses

Calibration: -2.0 Volts

Calibration: 0 Volt

"X"String Battery Output: -2S Volts

"Y" String Battery Output: -2S Volts

"Z"String Battery Ontput: -28 Volts

Load Bus: -28 Volts

Regulated -24.5 Volts, System No. 1

Regulated -24.5 Volts, System No. 2

Regulated-13.0 Volts, System No. 1

Regulated-13.0 Volts, System No. 2

Vertical Sync Pulse, System No. 2

tlorizontal Sync Pulse, System No. 2

Vertical Sync Pulse, System No. 1

Horizontal Sync Pulse, System No. 1

Vldicon High Voltage, Systems 1 and 2

Temperature, P,ase :t

Filament and Focus Current, Vidicon No. 1

Filament and Focus Current, Vidicon No. 2

Rocket Switch "Home" Position

Temperature, Hat, 3-in Radial *

Temperature, ttat, 12-in Radial*

Solar-Cell Patch Voltage

Temperature, Base $

500-cps Converters for Tape Recorders

Temperature, QOMAC Coil*

Temperature, Side Panel *

Temperature, Solar-Cell Patch *

Solar-Cell Array Output Voltage

Temperature, Base *

Solar-Cell Array Output Current

Temperature, TVCamera No. 2 _:

Temperature, TV Xmtr No. 1 I

Temperature, Beacon Xmtr No. 2 _t

Temperature, Camera Clock No. 2 $

Temperature, Battery Pack

"ltome" Position

* Temperature Sensor Range: -30 to +100°C

_ Temperature Sensor Range: -20 to +10°C

Temperature Sensor Range: +10 to +40°C

Commutator No. II

(136.92-Mc Beacon)

Parameter

Calibration: -2.5 Volts

500-cps Converters for Tape Recorders

Calibration: -1.0 Volt

Temperature, QOMAC Coil

Calibration: -2.0 Volts

Calibration: 0 Volt

Regulated -24.5 Volts, System N, 1

Regulated -24.5 Volts, System N, 2

Regulated -13 Volts, System No. 1

Regulated -13 Volts, System No. 2

"X" String Battery Output: -28 Volts

"Y" String Battery Output: -28 Volts

"Z" String Battery Output: -2_ Volts

Load Bus: -28 Volts

Solar-Cell Array Output Voltage

Temperature, Base t

Solar-Cell Array Output Current

Temperature, Base t

Filament and Focus Current, Vid No. 1

Temperature, Base *

Filament and Focus Current, Vid No. 2

Vidicon High Voltage, Systems 1 and 2

Temperature, Solar-Cell Patch *

Solar-Cell Patch Voltage

Temperature, TVCamera No. 2

Temperature, TVXmtr No. 1

Temperature, Beacon Xmtr No. *

QOMAC Syne Pulses

QOMAC Clock Power

Temperature, Camera Clock No. 2

Temperature, Battery Pack l

Vertical Sync Pulse, System No. 2

Horizontal Sync Pulse, System N 2

Vertical Syne Pulse, System No. 1

ttorizontal Syne Pulse, System N 1

Temperature, Hat, a-in Radial *

Temperature, Hat, 12-in Radial

Temperature, Solar-Cell Patch *

Rocket Switch "Home" Position

"Home" Position
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Vibration testing on beacon No. 1, Serial No. 3-406-01, was successfully completed

on July 17, 1963, and thermal-vacuum testing on July 21.

Vibration testing on beacon No. 2, Serial No. 3-405-02, was successfully com-

pleted on July 30, 1963, and thermal-vacuum testing on August 16.

b. Telemetry Switches

The two telemetry switches, Serial Nos. 3-902-05 and 3-902-06, were subjected

to vibration testing on September 3, 1963, with satisfactory results.

E. REFERENCE-INDICATOR SUBSYSTEM

1. General

The TIROS X reference-indicator subsystem comprises the solar-aspect indicator

and the attitude horizon scanner. (A north-indicator subsystem, such as that included

on TIROS VII, was also installed on spacecraft OT-1; but this subsystem was discon-

nected for the TIROS X mission.)

Attitude data from the attitude horizon scanner (nadir angle data) and the solar-aspect

indicator (gamma-angle data) is transmitted from the satellite via the beacon trans-

mitters to the ground stations, where it is displayed on a Sanborn recorder, and re-

duced and interpreted.

2. Solar-Aspect Indicator

a. General

The solar-aspect indicator utilizes a Gray-coded light mask which produces direct

digital readings of the _ angle, i.e., the angle between the satellite-sun line and the

satellite spin axis. The readings are presented as serial, Gray-coded words. The

solar-aspect indicator has a 1-degree resolution over a range of 128 degrees. It con-

sists of two separate subassemblies: the sensing element (the aspect indicator) and

an electronics package. The sensing element consists of a 7-bit Gray-coded reticle

equipped with a small solar cell under each bit, and a double-slitted "command"
reticle which also includes a solar cell. The electronics package contains an amplifier

for each bit, bi-stable multivibrators to establish thresholds and to convert the parallel

input to a series output, and control circuits. The command reticle causes the angle

determined by the Gray-coded reticle to be read out when the sun is in a plane defined

by the spin axis and the satellite-sun line passing through the aspect eye.
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b. Aspect Indicator

The reticle is a small oblong block of fused quartz with a slit centered along the

top surface, and a light mask, arranged in a Gray-coded pattern, photographically

,_,_u to _,,= _t,_Lu,,_ _umacv. Gray code was chosen for the iight-mask pattern to

eliminate any errors in the measurement of the gamma angle caused by errors in

the synchronization of the data bits. Such errors could be easily noted in the Gray

code since only one data bit would change when the measured angle changes one de-

gree. Sunlight enters the indicator through the slit in the top surface of the reticle,

casting a narrow band of illumination across the light mask. Each of the seven bits

on the Gray-coded reticle is superimposed on a photocell which detects the light (or

notes the absence of light) in the aperture and produces a corresponding electrical

output signal. P-on-N silicon solar cells are used as the photosensitive units. Al-

though the output signal from this type of cell is relatively small (on the order of 40

to 50 microamperes) and therefore requires amplification, the cells can readily with-

stand the space environment and possess uniform outputs having a linear relationship

to the incidence of light. The effects of ultraviolet and Van Allen radiation are mini-

mized since the cells are substantially shielded by the fused quartz block.

The command reticle and its associated photocell is used as a trigger for the

aspect indicator. The unit permits the sun angle to be read out only when the sun is

contained in a plane at a right angle to the slit over the Gray-coded reticle. (This

occurs once per satellite revolution.) The device consists of a reticle slitted on the

top and bottom surfaces and mounted over a photocell. The slits are oriented 90

degrees to the slit in the Gray-coded reticle.

c. Electronics Package

A block diagram of the solar-aspect indicator is shown in Figure II-7. The output

of each of the solar cells in the aspect indicator provides a maximum signal of approxi-

mately 50 microamperes into a low-impedance load. The signals from each bit are

amplified by one-stage, chopper-stabilized d-c amplifiers and are applied to the first

seven bits of an eight-bit shift register. Chopper transistors in the bit amplifiers are

used to a-c couple the solar cell output to the amplifier, thereby preventing leakage

in the solar cell due to the reversed-biased diode characteristics during high ambient-

temperature conditions.

The command-eye produces a constant output at various gamma angles, and is

connected to a d-c chopper which is driven by a 4-kc multivibrator. The chopped

command-eye signal is amplified and coupled to a capacitive integrator through all

emitter follower, which establishes the charge path for the integration of the chopped

command-eye signal. The second output of the multivibrator is used to saturate a

switch ill the discharge path of the integrator circuit. The charge level of the inte-

grator is de-coupled through an emitter follower to the input of the Schmitt trigger.
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The combination of the relatively short RC time constant of the charge path, and the

long RC time constant of the discharge path (switched in at a 4-kc rate) combine to

produce the step pattern of the output waveform. This output permits the Schmitt

circuit to trigger at a discrete level, rather than on an undefined point on the com-

mand eye wavefront.

When a command pulse is received from the command eye amplifier, the negative

going slope of the Schmitt-trigger output starts a 500-microsecond monostable multi-

vibrator. The output of the multivibrator is inverted and applied to the chopper

transistors in the bit amplifiers. The inverter output is also differentiated in the

bit amplifiers and the negative half of the pulse is "AND'ed" with the collector of the

bit amplifier in a manner that causes a "1" to be set into the register whenever the

collector is above a predetermined level.

The compensated output of the bit amplifiers approaches a truncated triangular

wave. Ideally, the transition from a "0" to a "1" should occur at the point where

the light coming through the slit falls half on the opaque, and half on the transparent

area of the Gray-coded reticle. The flip-flops in the register are designed to trigger

at the midpoint, setting at "1" for a signal above the midpoint and at "0" for below. A

serial output is obtained by connecting the threshold flip flops together in a shift

register configuration. A shift oscillator is used to generate the shift pulses. The

"0" side of all shift register flip flops are applied to an OR circuit, whose output is
used to enable the shift oscillator. A "1" is set into the "end-of-word" bit when the

register is reset; therefore the shift oscillator will be enabled until this bit has been

shifted out, after which the oscillator is disabled, ending the readout sequence.

On initial power turn-on, the integrator provides an output which is connected

through diodes to the "0" side of the shift-register flip-flops and holds them off for

50 to 100 milliseconds. At the end of this period, a transistor switch is closed,

disabling the "0" diodes until power is removed. The system will operate off a re-

dundant set of d-c power supplies (-13 volts, and -24.5 volts) and can be switched to

either set in the event of supply failure. (The -24.5 volt supply is turned on by a

ground command; and the -13 volt supply is turned on by the solar-aspect indicator,

itself. )

3. Attitude Horizon Scanner

The attitude horizon scanner comprises two infrared horizon sensors and associated
electronics. The two horizon sensors are installed such that sensor No. 1 looks

upward from the baseplate at an angle of 40 degrees and sensor No. 2 looks downward

at an angle of 40 degrees. Thus, as the spin-stabilized TIROS X satellite orbits the

earth, the optical axis of at least one of the two sensors will intercept the earth

during part of each spin period. During the period that a sensor scans (or views)

the earth, the infrared input level is significantly higher than during the sky-scan

II-19



periods and an output pulse is generated. This pulse is differentiated and trans-

mitted to ground where it is recorded on a paper chart recorder (the major positive-

going pulses indicating sky-to-earth transitions and the major negative-going pulses

indicating earth-to-sky transitions). From this recording, the ratio of the earth-

IO£ U_tC[I sei]_soi" i:LllU _Jlll [)_[IUUstall pu_luu tiE) t_SPlN) _ u_L_l"mm_u a[lu, as

detailed in the TIROS X Attitude Handbook, used in conjunction with the gamma-angle

data from the solar-aspect indicator to determine the spin-axis attitude in terms of

roll angle ((0max) and orbit phasing angle (7.). A block diagram of the attitude hori-

zon scanner is shown in Figure II-8.

SENSOR NO:) (OOWN-_)

1

ELEMENT

SUN SENSING

FILTER ELEMENT

SENSOR NO I (UP-LOOKING)

HORIZON

SENSOR

BOARD

I

1

-24.5 V POWER

QOMAC BIAS FROM

__ QOMAC CONTROL

L___ SENSOR UNIT2"._NO
n

I - - OATA k TO AOX
I_i,. SENSOR NO I (CONTROL
n i

/OATA JUNIT

Figure II-8. Attitude Horizon Scanner, Block Diagram

Each sensor in the attitude horizon scanner is identical to the TIROS VII horizon

sensor, with the exception that the size of the included angle between the two sensors

(80 degrees) made itnecessary to add a sun filter to the "up-looking" sensor, sen-

sor No. 1.

4. Testing

a. Solar-Aspect Indicator

The solar-aspect indicator was purchased from a manufacturer who flight-

qualified the unit prior to delivery to AED.

b. Attitude Horizon Scanner

(1) Qualification Testing

Horizon sensor No. 1, Serial No. 3-901-2, successfully completed vibra-

tion testing on December 7, 1963, and thermal-vacuum testing from December 13

through December 15, 1963.
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Horizon sensor No. 2, Serial No. 3-901-1, successfully completed

vibration testing on November 19, 1963, and thermal-vacuum testing from November
11 through November 14, 1963.

(2) Spectral Response

The optical responses of the two horizon sensors are identical in design,
except that an 8-micron long-wavelength pass filter is placed in front of sensor No. 1

to reduce sun interference. Figure II-9 shows the relative spectral response of the
two horizon sensors.

In Figure II-10, the relative output (as compared to peak output) of hori-

zon sensor No. 2 is plotted as a function of the angular displacement of the target

from the mechanical axis. The data was obtained by moving a small (subtended
angle of less than 0.1 degree) radiation source across this field-of-view. Horizon

sensor No. 1 provides a similar response, except that elevation between mechanical

and optical axes for sensor No. 1 is only 1 minute of arc. The fields-of-view of the

sensors, measured in two orthogonal directions for a 50-percent response, ranged
between 67 and 81 angular minutes.

F. POWER-SUPPLY SUBSYSTEM

1. Introduction

The power-supply subsystem for the TIROS X satellite consists of an array of 9120

P-on-N silicon solar cells, an energy storage system containing 63 nickel-cadmium

storage batteries, voltage regulation circuits, protection circuits, and telemetry

sensing networks. A special group of 60 cells, mounted on the top of the satellite

hat, are included in the subsystem so that indications of the over-all condition of the
solar cells can be telemetered to the CDA stations.

The solar cells are mounted on the top and sides of the satellite structure. During

orbital day, when the solar cells are illuminated by the sun, the output of the array

is used as a primary power source for the satellite's electrical system; any excess

power (power that is not needed by the satellite electronics) is used to charge the

storage batteries. In cases where peak power requirements exceed the power output

of the solar cells, the batteries automatically supply the power difference. During

orbital night, the storage batteries, which have a total capacity of approximately 309
watt-hours, supply all the power required by the satellite. Precautions have been

taken to prevent ¢irculating currents in the power source interconnections and to pre-
clude the total los._ of power in the event that a short circuit occurs in one of the

battery cells.
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The storage batteries are electrically connected in three independent groups, each of

which is connected to the solar-cell array through its own charge current controller.

The charge controllers limit the maximum current into each battery string to a safe

charge level. Excess array power is diverted through a bypass regulator to the main

battery output bus. The bypass regulator also limits the maximum voltage excursion

of the battery output bus so that input limits of the series-row voltage {-24.5 volts dc)

are not exceeded. During orbital night, when the solar cells are passive, silicon

diodes in each series row of solar cells prevent the storage batteries from discharg-

ing into the solar cells.

A similar function is performed by the diodes which are included in each series row
of solar cells located on the lateral surface of the satellite. Because of the satellite

rotation, each row is alternately illuminated and then darkened. The diodes prevent

the darkened solar-cell rows from loading the illuminated rows. The storage bat-

teries, in addition to providing power for the satellite subsystems, provide a rela-

tively constant voltage across the solar cells, isolating them from variations in the
electrical load.

II-23



Minus 24.5 volts and minus 13 volts are provided to supply the regulated d-c voltages

required by the spacecraft. Minus 28 volts (unregulated) is supplied by the main

battery output bus or the array bus via the bypass regulator, depending on which is

more negative. Its limits are determined by the minimum battery bus power (minus

25.2 volts) and the maximum clamping level of the bypass regulator, minus 33 volts.

A block diagram of the power-supply subsystem is shown in Figure II-11.

2. Equipment Description

a. Solar-Cell Array

Electrical power for the satellite subsystems is generated by an array of 9120

P-on-N silicon solar cells mounted on the top and sides of the satellite structure.

Each cell is 1 x 2 centimeters in area, and has a transparent, 0.006-inch, micra

platelet bonded to it to improve thermal emissivity. An anti-reflective coating which

permits maximum light transmission in the 600- to 800-millimicron range (where

the cells are most responsive) is vacuum-deposited on the upper (or outer) surface

of each cell. A multilayer, sharp cutoff, blue reflective coating is deposited on the

lower or inner surface. This coating reflects all wave-lengths lower than 400 milli-

microns and transmits 90 to 95 percent of all longer wave-lengths up to and beyond

the ll00-millimicron upper response limit of the cells. The platelet is bonded to

each cell with a transparent epoxy adhesive.

The cells arc assembled in shingle form, each shingle consisting of 5 cells con-

neeted in series. Each shingle has a conversion efficiency of 9.0 percent at 1.95

volts and at a temperature of 27 :L 2°C. A group of sixteen shingles (i.e., 80 series-

connected solar cells) are bonded to a flat epoxy-fiberglass board 3. 400 inches wide

by 7. 572 inches long by 0. 036 inch thick. The resultant moduleboard assembly

weighs approximately 80 grams.

The modules arc bonded directly to the top surface of the satellite and to the 18

side panels in parallel groups of four, with the zero (ground), one-quarter, one-half,

three-quarters, and full voltage points connected in series. This method of inter-

connection tends to minimize effects of a shorted or open solar cell.

The physical characteristics of the fully assembled solar array are as follows:

Area No. of Cells Active Area

Top 3520 6.8 square feet

Sides 5600 10.9 square feet
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b. Solar-Cell Telemetry Patch

A group of solar cells mounted on the top of the hat is electrically isolated from

the power supply and provided with a fixed resistive load that provides a d-c signal

to the telemetry subsystem. When the top surface of the hat is illuminated, this

group of solar cells provides an uninterrupted output voltage whose level is a function

of solar-cell temperature and sun angle.

In orbit, the telemetered voltage output, VT, of the solar-cell patch and the cali-

bration voltage, VC, for the specific solar-cell temperature and sun angle are

periodically examined. This comparison, expressed by the ratio VT/VC, provides a

measure of solar-cell per[ormance and thereby, a means of checking solar-cell de-

gradation due to radiation damage and micrometeorite bombardment.

c. Storage Cells and Battery Pack

The characteristics of the individual storage cells are as follows:

(1) Type of cell: Sintered plate glass-to-metal seal; hermetically sealed

nickel-cadmium storage cell, F-size, with paper separators.

(2) Ampere-Hour Capacity:

(a) 3.9 ampere-hours at a 1.30 ampere discharge rate at a terminal

voltage of 1.20 volts or greater at 25°C.

(b) 3.1 ampere-hours at a i. 30 ampere discharge rate at a terminal

voltage of I. 20 volts or greater at 0°C.

(e) 2.7 ampere-hours at a 1.30 ampere discharge rate at a terminal

voltage of 1.20 volts or greater at 40°C.

(3) Watt-hour capacity: 4.9 watt-hours at 25°C for discharge conditions

listed in (a) above.

(4) Watt-hours per pound: 8.91 watt-hours at 25°C for discharge condi-

tions listed in (a) above.

(5) Maximum recharge rate: 0. 600 ampere between 0°C and 40°C.
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(6} Watt-hour efficiency: 70 percent.

(7} Physical Characteristics of Cell:

(a} Weight: 0.53 to 0.55 pound.

(b) Diameter: 1.3 inches.

(c) Length: 3.5 inches.

(d} Volume: 4.7 cubic inches.

The characteristics of the overall battery pack are as follows:

(i)

(2)

(3)

(4)

Number of F-size cells: 63

Number of parallel rows: 3

Number of series cells per row: 21

Total watt-hour capacity: 309 at discharge conditions defined in

paragraph (2) (a) above.

(5) Total ampere-hour capacity: 1.7 at discharge conditions defined in

paragraph (2) (a) above.

(6) Total weight of assembled battery including all packaging: 39 to 41 pounds.

The following battery operational parameters are telemetered to the ground:

(1) The terminal voltage of each of the three rows of storage cells.

(2) The voltage supplied to the input of one of the voltage regulators by the

three rows of storage cells, each supplying power to the regulator through
isolating diodes.

(3) The temperature of the battery pack.

(4) The output voltage of two minus 24.5 volt d-c voltage regulators and two

minus 13.0 volt d-c regulators.

Each of these parameters is employed to determine whether the storage batteries

and associated equipment are performing within the limits of the electrical design
specifications.
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d. Current Telemetry Board

The array-current telemetry circuit permits an evaluation of the electrical per-

formance of the solar-cell array under orbital conditions. The magnitude of current

flowing in the solar-cell array is measured, and the measured value is converted to

a signal voltage suitable for transmission to the ground by means of the telemetry

system. The maximum output signal of the array-current telemetry circuit, with 2.5

amperes flowing through the array current sensing resistors, is set at -5 volts de.

The circuit is normally in the OFF state, and is commanded ON by a -24.5 volt d-c

signal.

The array-voltage telemetry circuit is also included in the current telemetry

board. This circuit is a precision, resistive divider network connected directly

across the output of the solar array, and provides telemetry signals directly propor-

tional to the array output.

e. Power Supply Protection Unit

(1) General

The TI]ROS X power supply protection unit (PSPU) is basically similar to

that used on TIROS VII. PSPU comprises charging regulators, voltage dividers, a by-

pass rcgulator, prc-regulators, and an external mounting block for the 12-ampere

fuses.

(2) Charging Regulators

The PSPU includes a charging regulator for each battery string. The

charging regulators limit the charge rate of each bank to 440 + 40 milliamperes

whenever the battery voltage is from 1 to 14 volts below the solar-cell array output

voltage.

(3) Fuse-Wire Mountings

Five 12-ampere fuse wires are connected between the unregulated bus

and the major subsystem elements, and two 1.2-ampere fuse wires are placed between

the unregulated bus and the two pre-regulators.

For the TIROS IX program, a new fiberglass fuse housing which com-

pletely encloses the individual fuses was designed for mounting on a bracket on top

of tile PSPU. This type of housing was used for mounting the 12-ampere fuses on

TIROS X.
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(4) Isolating Diodes

Six high-current transistors, connected as diodes, are used to isolate

the charging and load-delivering paths of each 21-celi battery string. These diodes

prevent (I) battery discharge into the satellite loads during the daytime (except

during periods of high-current requirements), and (2) battery discharge into the

quiescent solar-cell array during the orbital night. The units also prevent circulat-

ing currents between the parallel-connected battery strings and, in the event of fail-

ure in one string, preclude total loss of power by isolating the defective battery string.

(5) Bypass Regulator

Under normal conditions, the solar-cell array can deliver 2.2 amperes

to the satellite. Of this total, whatever is required for direct use by the satellite

loads will be supplied, and the remainder, to a maximum of 1.2 amperes will be

supplied to the batteries by means of the charging regulators.

A simple two-transistor bypass regulator prevents the voltage level of

the unregulated power bus from exceeding 32 volts. When the input drops below 32

volts, the bypass regulator functions as a diode with a forward drop of approximately

1.0 volt and passes the current to the load without regulation.

(6) Pre-Regulators

Two pre-regulators (voltage reducers), connected across the unregulated

bus, clamp their outputs to -16 ± 1 volts dc, providing pre-regulated inputs to the

two -13 volt dc series voltage regulators.

f. Voltage Regulators

The TIROS X power-supply subsystem also includes two -13 volt regulators and

two -24.5 volt regulators. The regulators used on TIROS X are the same series-type

units as were used on TIROS VII, with a -13 volt unit and a -24.5 volt unit housed

together in an open, 0.25-inch aluminum chassis, and temperature-compensated,

single-ended amplifiers used for sensing.

3. Testing

a. Battery Pack

The flight-model battery pack, Serial No. 3-721-06, was successfully subjected

to vibration testing on August 31, 1964 and was electrically tested on September 1,

1964. It was delivered for integration on September 4, 1964. The battery was later

re turned to engineering for the installation of improved terminal feed-through pins
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on eachof the nine modules. After completion of the work, the battery was re-
qualified on January11, 1965, and againdelivered ready for integration with the
spacecraft. In May, 1965, the flight-model battery packwas subjectedto a final
checkoutprior to installation on spacecraftOT-1. It was first subjectedto a con-
ditioning charge anddischarge from May 4 to 6, 1965, andthen to a capacity test at
25°C on May 7, 1965. Thebattery was thendischarged completely and subjectedto
a secondcapacity test on May 11, 1965. The test voltages for eachof the three rows
after charge anddischarge are listed in Table II-4, alongwith the acceptablemaxi-
mum andminimum values. On May 12, 1965, as a result of these tests, the battery
was again declaredto be flight-qualified.

b. Voltage Regulators

Voltage Regulators, Systems Nos. 1 and 2, Serial Nos. 3-704-01 and 3-704-02,

respectively, were subjected to vibration testing on August 14, 1963, and thermal-

vacuum testing from August 18, 19(;3 to August 21, in each case with satisfactory

results.

c. PSPU

The PSPU, Serial No. 3-703-02, was successfully subjected to vibration testing

on September 30, 1963. Thermal-vacuum testing on the unit was completed on

October 3, 1,,)(;3, with satisfactory results.

d. Current Telemetry Board

The current telemetry board was successfully subjected to vibration testing on

April 28, 1964. On October 3, 1963, thermal-vacuum tests on this unit were com-

pleted with satisfactory results.

e. Solar. Cell Array

The TIROS X solar-cell array was tested under sunlight at AED on April 29,

1965. Based on these measurements, a power prediction was developed (see Appendix

A), which further demonstrated that the array was capable of sustaining the mission.

G. AN TENNASUBSYSTEM

1. General

The TIROS X antenna sul)system provides for the reception of command signals from

the CI)A ground stations an(t for the simultaneous radiation of energy from three of

the four separate satellite transmitters (two beacon transmitters and either one of
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the two TV transmitters). The subsystem also provides for coupling and matching

the receivers and transmitters to the antennas and isolating the three active trans-

mitters and the two command receivers.

The subsystem consists of (I) a single dipole receiving antenna for the command re-

ceivers, (2) two crossed-dipole transmitting antennas, (3) the associated RF matching

and coupling network for the transmitters, and (4) a notch filter* for further isolating

the receivers from the beacon transmitters.

2. Functional Description

a. Receiving Antenna

The receiving antenna is a separate 1/4-wavelength dipole at the command fre-

quency. It is positioned in the neutral plane of the crossed transmitting dipoles.

This positioning causes an approximate 45-db attenuation to exist between the trans-

mitting and receiving antenna terminals. The receiving antenna is vertically mounted

on top of the satellite at the spin axis and is coupled to the two receivers through a

1/2-wavelength transmission line, a four-way cross adapter, and 3/8-wavelength

transmission lines.

b. Transmitting Antenna

The two crossed-dipole transmitting antennas form a composite antenna operating

at both the beacon and the TV frequencies. It consists of four elements mounted to

the satellite baseplate. Each element is a coaxial structure with rods extending

through canted sleeves. The total element leng*h is approximately 32.5 inches, which

is equivalent to 0.36 wavelength at the 136-Mc beacon frequency. At the TV frequency

(235.0 Me), the rod extensions are isolated from the coaxial sleeves by a short-
circuited stub within each coaxial structure. Thus, at that frequency, the element

length is that of the sleeves, which extend 12 inches from the drive end of the dipole.

This length is equivalent to 0.25 wavelength at 235 Me. The dipoles are fed in quad-

rature to achieve circular polarization.

c. Matching and Coupling Networks

The TIROS X matching and coupling network is the same as that used in TIROS II

through VII and in TIROS IX. The network couples the three transmitters to the radiat-

ing elements, provides an impedance match for this coupling, minimizes interaction

and feedback between the transmitters, and effects circular polarization by exciting

the antenna elements in phase quadrature.

*The notch filter was added immediately prior to launch to eliminate an interference

condition observed during testing at the launch site.
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Figure II-12 shows the schematic diagram of the matching and coupling network.

The network is composed of two similar sections, each consisting of a diplexer and

two baluns. The RF transmitters (shown as a-c generators in Figure II-12) are con-

nected symmetrically across the diplexer inputs, while the matched loads are driven

from the output. The currents in the two loads are phase-displaced by 180 degrees.

Theoretically, the two transmitters in each section are completely isolated, resulting
in a perfect load match.

The two baluns in each section are essentially delay lines that selectively phase the

RF currents in the dipoles. To achieve circular polarization, the two line lengths

between the diplexer outputs and their respective baluns differ in electrical length by
90 degrees.

d. Notch Filter

By NASA directive, a notch filter was added to TIROS X at the launch site to reduce

RF-interference effects experienced at the gantry. The notch filter is connected to

one input of the coaxial adapter to prevent operation of the beacon transmitters from

affecting the command receiver. The filter is identical to those used on TIROS VII and

TIROS IX, and is in the form of a shunt stub-line placed across the antenna line. The

stub is open-circuited and one-quarter wavelength at the frequency to be rejected,

thereby providing a high conductance at the rejected frequency, but an extremely low

conductance at the command-receiver frequency. The achievement of a high conduc-

tance at the rejection frequency in the 137-Mc band and a negligible conductance at

the relatively close command frequency required a line having both a high Q and high
characteristic impedance.

The RF filter used to satisfy these requirements utilizes a coaxial transmission

line having a helical inner conductor, the diameter of which is approximately half
the inner diameter of the outer conductor.

The TIROS X notch filter was tuned for maximum isolation at 136. 575 Mc, i.e.,
the median of the beacon frequencies.

3. Testing

a. Transmitting Antenna

The transmitting antenna (Serial No. 3-408-01) was combined with the matching

and coupling network on September 3, 1963. Final tuning of the antenna, which con-

stitutes its electrical acceptance test, was performed on October 8, 1963.
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b. Matching and Coupling Network

Both the 136-Mc section of the matching and coupling network, Serial No. 3-409-

01, and the 235-Mc section passed electrical acceptance tests on July 1, 1963, and

the sections were accepted for final fabrication on the same date. Electrical accept-

ance tests of the final configuration of both sections were successfully passed on July
25, 1963.

c. Notch Filter

The notch filter successfully completed acceptance tests on November 16, 1964.

During these tests, a final measurement of the filter's response characteristics was
made. The results obtained are plotted in Figure II-13.

H. DYNAMICS-CONTROL SUBSYSTEM

1. Gene ral

The TIROS X dynamics-control subsystem comprises the following units:

• precession dampers,

• despin device,

• spin-up rockets,

• QOMAC (Quarter Orbit Magnetic Attitude Control) coil, and

• MBC coil.

On TIROS X, the QOMAC coil was added to the standard TIROS dynamics-control sub-

system to permit spin-axis attitude control. In addition, the voltage rating and cur-

rent capability of the MBC coil were increased for all positions of the MBC switch,

and two high-torque switch positions were provided to permit a back-up capability for
spin-axis control in the event of a failure in the QOMAC coil after the turn-around

maneuver is accomplished. (The MBC coil still provides, however, for cancellation

of the satellite's residual dipole moment. )

2. Precession-Damping Devices

The initial wobble of the satellite, caused by precession or nutation after release from

the third-stage rocket, is damped-out rapidly by two tuned-energy-absorption-masses

(TEAM) that oppose the forces that tend to oscillate the satellite body. The precession-

damping devices are shown in Figure 11-14. Two similar mechanisms are installed
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vertically along the inside wall of the satellite hat, 180degreesapart. Each mechan-
ism weighsa little under onepound;eachmass, approximately 3 ounces. During
launch, eachtravelling mass is restrained by a mechanicalgate. Uponseparation
of the satellite from the third stageof the launch vehicle, the gatesare openedby
automatic firing of squibs, permitting the masses to roll freely alongthe rods. Man-
ual firing of squibs from the ground station, utilizing switch contacts on the rocket-

firing switch in the satellite, is also provided as a back-up control measure. The

device is tuned to the natural precession frequency of the satellite, i.e., 2.74 cps,

and rapidly absorbs the energy causing the wobble, dissipating this energy in the form

of heat. Upon stabilization, the masses rest at or near the center of the rods.

3. Despin Mechanism

When the satellite separates from the third stage of the launch vehicle, its spin rate

is approximately 126 rpm. The despin mechanism is used to reduce this spin rate to

an operational rate in approximately 0.5 second. The mechanism consists of a pair

of 1-pound weights attached to light steel cables, wrapped once around the satellite,

about the periphery of the baseplate, and attached to the satellite structure by means
of hook-and-eye devices. Approximately 9 minutes after separation of the satellite

from the launch vehicle, the masses are released by the automatic firing of a pair of

squibs. (A capability for manually firing these squibs in response to ground command

is also provided. ) The released masses move radially from the satellite, unwrapping
the cables and resulting in a significant increase in the satellite 's moment of inertia.

This, in turn, reduces the spin rate to approximately 10 rpm. When the cables un-

wrap completely, they disengage from the hook-and-eye devices and the weights and

cables are cast off, carrying a portion of the satellite's kinetic energy into space.

Thus, the satellite's moment of inertia is returned to essentially its initial value, but
the lower spin rate is maintained.

4. Spin-Up Rockets

As the satellite spins, the ferrous materials used in its construction are acted upon

by the earth's magnetic field. This action produces a drag that slowly reduces the

spin rate. To restore the spin rate to its optimum range (8 to 12 rpm) five pairs of

solid-propellant rockets (each delivering an impulse of approximately 1.4 pound-

seconds) are mounted around the periphery of the baseplate. The firing of a pair of

spin-up rockets is programmed from a ground station when measurements indicate

the need for an increase in the spin rate. When fired, each pair of spin-up rockets

increases the spin rate between 3 and 3.5 rpm.

The firing of the rockets is controlled by means of a seven-position stepping switch.

The first position provides for back-up firing of squibs that control activation of the

precession dampers ; the second for back-up firing of the despin squibs ; and the re-

mainder for firing the spin-up rockets in pairs.
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5. QOMAC Coil

The center-tapped QOMAC coil is used in conjunction with the QOMAC clock and

QOMAC coil unit* to provide control over the attitude of the satellite's spin axis. This

control is effected by means o[ the torque resulting from the interaction of the earth's

magnetic field and the magnetic field which results from current through the QOMAC

coil. The operation of the QOMAC coil is utilized both in accomplishing the initial

turn-around maneuver and in ensuring that the minimum nadir angle occurs at the de-

sired point along the satellite subtrack.

The direction of current through the coil is reversed at quarter-orbit intervals such

that for each QOMAC cycle (see Figure II-15) a positive dipole is induced during the

the first quarter orbit and a negative dipole is induced during the second quarter orbit.

Sixteen QOMAC cycles are programmed for a given QOMAC sequence; a 16-cycle

(8-orbit) sequence will change the spin axis attitude by approximately 80 degrees. If

less than 16 cycles are desired, a CDA station must shut the QOMAC system off b v

a realtime command after the desired number of cycles have been completed. Unlike

TIROS IX, which could be commanded for either high- or low-torque QOMAC, TIROS

X is equipped to provide high-torque operation.

When a QOMAC sequence is desired, two separate command operations are required**:

First, camera clock No. 1"** must be set to the delay time required for the start of
the QOMAC sequence; second, a QOMAC ON command must be sent to the QOMAC

control unit.**** When the camera clock alarms, the QOMAC control unit allows cur-

rent through the coil in a direction such that a positive dipole moment results. Ap-

proximately 25 minutes later, the QOMAC clock sends a pulse to the control unit, re-

versing the current through the coil and resulting in a negative dipole moment. This

reversing of current at 25-minute intervals continues until the sequence is ended by

ground command or until 16 cycles are completed and the QOMAC clock turns off

automatically.

*Detailed functional descriptions of the QOMAC clock and QOMAC control unit are

provided in Volume II of this report, the classified supplement.

**The methods used in determining the need for a QOMAC sequence and the type of

sequence required are described in the TIROS X Attitude Handbook.

***The setting of camera clock No. 1 results in a Remote Picture Sequence. Depend-

ing upon the required QOMAC alarm time, the remote sequence might or might

not result in meteorologically useful pictures.

****Unless it is already on.
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Normally, a QOMAC sequence will be terminated by ground command and will consist

of much fewer than 16 cycles. In such cases, the sequence may be ended by sending

either a QOMAC power "OFF" command to the satellite (as outlined in Volume II) or

a playback command which resets both the QOMAC and the camera clock.

6. MBC Coil

The MBC (Magnetic Bias Control) device is composed of a 250-turn coil of wire wrapped

around the periphery of the satellite and a solenoid-operated stepping switch that con-

trols the direction and the amount of current in the coil. The MBC coil is used to

cancel the satellite's small inherent magnetic dipole due to the ferromagnetic materi-

als used in the satellite's construction and to the electromagnetism produced by the

satellite's operating currents. After a number of days in orbit the satellite begins to

show an attitude drift due to interaction of the residual dipole with the earth's magne-

tic field. This drift is analyzed and the residual dipole calculated; the MBC switch is

then commanded by the ground station to step to a position to cancel the residual di-

pole. After cancellation of the dipole, the MBC coil is used to generate a constant

dipole to cause the spacecraft attitude to drift, in order to compensate for the pre-

cession rate of approximately 1 degree per day that occurs with a sun-synchronous

orbit. (This reduces the amount of QOMAC programming required.)

By use of this device, an_ one of eleven different dipole moments (ranging from -10 to
+10 ampere-turns-meter") can be programmed into the satellite by ground-initiated

commands. As noted previously, two high-torque switch positions permit the MBC

coil to be used as back-up for the QOMAC coil once the turn-around maneuver has

been accomplished. These positions provide either a positive or negative magnetic

dipole moment of approximately 9.53 ampere-turns-meter 2.
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When the MBC switch is in its sixth position, it connects a zener diode across the coil

of the ON latching relays for the beacon transmitters. Although this diode will have

no effect on the relay if it is already energized, it will prevent the relay from being

re-energized after a 'q3eacon-kill" sequence. Thus, when the switch is set to position

6, the sateHite's TV picture subsystem can be programmed for operation without

causing the reactivation of the previously disabled beacons.

7. Testing

a. General

The components of the dynamics-control subsystem were individually subjected

to vibration testing prior to integration on the spacecraft and subjected to thermal-

vacuum testing with the environmental qualification tests of the integrated spacecraft.

b. Precession Dampers

The TIROS X precession dampers, Serial Nos. 3-503-01 and 3-503-12, underwent

vibration testing on August 5, 1964, with satisfactory results. The units were then

subjected to a break-away friction test, and both produced results well within

specifications.

c. Despin Mechanisms

The despin mechanisms, Serial Nos. 3-507-3 and 3-507-4, were successfully

subjected to vibration testing on October 24, 1963.

d. MBC Switch

The MBC switch, Serial No. 3-502-03, was successfully subjected to vibration

testing on August 6, 1963.

e. QOMAC and MBC Coils

The QOMAC and MBC coils, which are wound on the same frame, were sub-

jected to vibration testing on May 5, 1965, with satisfactory results.

I. SATELLITE STRUCTURE

1. General

The structure and configuration of TIROS X is basically similar to that of TIROS VII.

The structurc comprises (1) a baseplate assembly, upon which the operating
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components are mounted, and (2) a cover ("hat'5 assembly, which is used as a mount-

ing surface for the solar-cell array.

2. Spacecraft Layout

Figure II-16 shows the component layout of TIROS X. As was the case inTIROS VII,

TIROS Xutilizes an axial camera assembly in which the cameras view the earth through

ports in the baseplate. The distribution of components was dictated by the electrical sys-

tem requirements and by the requirements of dynamic balance. As standard procedure,

the batteries were located at the center of the baseplate, along the spin axis, and the

two tape transports were located at diametrically opposite positions.

The beacon timers were removed from spacecraft OT-1 in April 1965, in response to

a NASA directive. This directive also set the included angle between the two sensors

comprising the attitude horizon scanner at 80 degrees. This change necessitated the

use of new wedge brackets for the sensors, modification of the sensor viewing ports,

re-routing of the wiring harness, and the addition of a special sun filter to the '_p-
looking" sensor.

3. Temperature Sensors

To permit an accurate means of monitoring the actual component operating temperature

while the spacecraft is orbiting in the space environment, 13 temperature sensors

were mounted on spacecraft OT-1. The locations of the sensors, and the operating

range of each, are presented in Table II-5. TIROS X utilized temperature sensors of

three ranges, ÷10 to ÷40°C, -20 to +IO°C, and -30 to +IO0°C.

4. Thermal Analysis

The spacecraft OT-1 temperature profiles during the turn-around maneuver were de-

termined based on initial gamma angles of 116 degrees and 128 degrees, with a value

of 66.5 percent for the sun time. A temperature profile was also determined based

on an initial gamma angle of 126 degrees, a sun time of 64.0 percent, and a "tip-off"

error of about 2.5 degrees. These profiles are shown in Figures II-17, -18, and -19.

A fourth profile was determined, using the case of a 126-degree initial gamma angle,

for the steady-state temperatures which would occur in the event that the turn-around

maneuver would be prolonged. The results of this computation are shown in Figure
II-20.

For the case shown in Figure II-19, the maximum average component temperature

after 3 orbits would be 47°C. From Figure II-20, it can be seen that the steady-state

condition encountered with a 126-degree initial gamma angle, in the absence of the

turn-around maneuver, would yield an average component temperature of 53°C after
8 orbits.
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P o w e r  Supply  P r o t e c t i o n  U n i t  
V o l t a g e  R e g u l a t o r  No. 2 
' i uh i l id ly  Cont ro l  U n i t  
D S A I  E l e c t r o n i c s  U n i t  
DSAI 
T r l r m e t r y  S w i t c h e s  (2 )  
T V  T a p r  R e c o r d e r  NO. 2. P o w e r  C o n v e r t e r  
'TV T d p r  R v c o r d e r  No. 2. S i g n a l  E l e c t r o n i c s  

Figure 11-16. Component Layout of Spacecraft OT-1 



TABLE II-5. LOCATIONSAND OPERATINGRANGESOF
TIROSX TEMPERATURESENSORS

Sensor
Location

Hat, 3-in. Radial

Hat, 12-in. Radial

QOMACCoil

Side Panel

Solar-Cell Patch

Operating
Range

-30 to +100°C

-30 to +100°C

-30 to +100°C

-30 to +100°C

-30 to +100°C

Baseplate

Baseplate

Camera No. 2

TV Xmtr No. 1

-30 to +IO0°C

-20 to +IO°C

+I0 to +40°C

+lOto +400C

Beacon Xmtr No. 2

Camera Clock No. 2

Battery Pack

Baseplate

+10 to ÷40°C

+10 to +40°C

÷10 to +40°C

÷10 to+40°C

5. Mechanical Integration

The integration of components on spacecraft OT-1 followed the assembly procedures

used on previous TIROS spacecraft. A chronology of major events in the mechanical

integration of spacecraft OT-1 is presented in Table II-6. Table II-7 lists the serial

numbers and weights of spacecraft components.

6. Interface Check

On March 30, 1965, the X-258 attach fitting assembly was mounted and centered on a

rotary table which, in turn, was affixed to a surface plate. Flatness and concentri-

city measurements were made of the spacecraft interface and reference surfaces.
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Figure II-17. Temperature Profile for TIROS X During Initial

Torquing, Assuming Gamma Angle of 116 Degrees

The flatness of the interface surface was well within 0. 003 inch TIR, and the concen-

tricity of the three radial reference surfaces was also within this value.

Spacecraft OT-1 was then mounted on the attach fitting and the interface mating be-

tween the two was within 0. 0015 inch at every point around the periphery.

Mating of the lift-off and separation switch actuators with the contact plate in the at-

tach fitting was observed; and, in all four cases, the actuators struck the plate satis-

factorily, i.e., at least 0.25 inch from the clearance slot in the center of the plate.
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Figure II-18. Temperature Profile for TIROS X During Initial

Torquing, Assuming Gamma Angle of 128 Degrees

A runout measurement was made at the top of the spacecraft, employing the eccentric

plug which is used at the launch site during balancing of the spacecraft/third-stage

rocket assembly. The eccentrics in the plug were set at "0", and the runout measure-

ment was 0. 024 inch TIR, well within the allowable limit.

The interface check was attended by representatives from NASA, the Douglas Aircraft

Company, and AED. At the completion of the check, the group reviewed the results and

agreed that the interface mated properly and that no difficulties at the launch site should

be anticipated.

During this check, it was noted that the fairing for spacecraft OT-1 would be identical

to that for TIROS IX, with the addition of camera illuminating lights and "in-line"

translucent panels in the smoke shield.
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TABLE II-6. CHRONOLOGY OF MECHANICAL INTEGRATION

OF SPACECRAFT OT-1

1965

Date Action

Feb 24

Mar 1

Mar 4

Mar 8

Mar 9

Mar 18

Mar 30

April 5

April 9

April 21

April 23

April 27

April 28

May 1

May 2

May 3

May 5

May 6

May 13

May 15

May 18

May 22

May 25

May 27

June 1

June 3

June 4

June 11

Tape recorder, R-2 box, co-axial relay, telemetry switch, command

receiver, and camera S/N 01 removed.

Horizon sensor S/N 01 removed.

TV camera electronics removed.

"HOLD" STATUS FORMALLY RESCINDED BY NASA DIRECTIVE.

Horizon-sensor wedges installed.

Installation and "tie-down" of all subsystems initiated.

Spacecraft OT-I and Douglas attach fitting mated.

Electrical integration check-out of spacecraft performed.

Spacecraft placed into Tenney chamber.

One-year timers removed.

Optical alignment of sensors measured.

Fine dynamic balance performed.

RF tests performed.

Spacecraft placed in Termey chamber, then removed at 3:00 P. M.,

and SEPET begun.

Initial camera alignment and distortion test performed.

Spacecraft placed in thermal-vacuum chamber for qualification tests.

Spacecraft removed from chamber for replacement of R-2

boxes, and camera system No. 1.

Spacecraft reinstalled in thermal-vacuum chamber.

Spacecraft removed from thermal-vacuum chamber.

Flight-model battery pack installed on spacecraft.

Vibration phase of qualification tests performed.

Spacecraft installed in thermal-vacuum chamber.

Spacecraft removed from chamber because of problem with

TV transmitter No. 2.

Spacecraft installed in thermal-vacuum chamber.

Spacecraft removed from thermal-vacuum chamber.

Magnetometer test conducted.

Final optical alignment and distortion tests, camera scene-

brightness tests, and final balancing performed.

Outdoor solar-cell test performed.

Spacecraft placed in shipping container.
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TABLE II-6. CHRONOLOGY OF MECHANICAL INTEGRATION

OF SPACECRAFT OT-1 (Continued)

l.qfl3

l)ate Action

JUIW l l Structure received from Purchased Material Inspection.

June 2t Side panels removed from spacecraft hat for attachment of solar-cell

shingles. Despin pans fitted to the hat structure.

Aug 7 Solar-cell shingles installed on the top of spacecraft hat.

S_'I)t 17 Baseplate drilled for mounting of components; subsystem installation started.

()(:t 50 ltat harness installed.

Nov 22 All subsystems installed except for cameras, diplexer, and north-indicator

sun sensors,

Dee 2 Despin pans and dampers installed.

I)_c 5 Cameras installed. Hat wiring completed, except for magnetic attitude coil.

Dec 6 All hat wiring bonded.

l)ee 10 Magnetic attitude coil installed in hat.

Dec 19 Basel)late dampening brackets fitted and installed.

1964

l;ati7 " [ " " Action

.... .........
Jan 22 llat taken outdoors, into sunlight, for solar-cell test.

,Jan 27 Both tape-recorder transports and R-3 boxes removed.

Feb 13 TV transmitter No. 1 replaced.

Mar 2 SPACECRAFT PLACED IN "fieLD" STATUS BY NASA DIRECTIVE

Mac 9 l),ammy weights replacing IR equipment installed. Spacecraft assembly

completed.

Mar lO Rough dynamic balance performed, and balance weights installed.

Mac 16 Initial optical alignment performed.

Mar 23 ltat taken outdoors, into sunlight, for solar-cell test.

Mar 25 Fine dynamic balance performed.

1965

Date _ Action

Feb 16 | Reeonfigmration activity initiated in anticipation of removal of the

l "hold" status on spacecraft OT-1.

Feb 23 | TEAM precession dampers installed.
1
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TABLE II-7. SERIAL NUMBERS AND WEIGHTS OF

SPACECRAFT OT-1 COMPONENTS

Components Serial No. Weight (Grams)

Camera System (Sys.) No. 1 (Shutter S//N 06)

Camera Sys. No. 2 (Shutter S/N 03)

Camera Electronics, Sys. No. 1

Camera Electronics, Sys. No. 2

Tape Transport (R-1 Box), Sys. No. 2

Tape Transport (R-1 Box), Sys. No. 1

Tape Recorder Power Conv (R-2 Box), Sys. No. 2

Tape Recorder Power Conv (R-2 Box), Sys. No. 1

Tape Recorder Signal Cond (R-3 Box), Sys. No. 1

Tape Recorder Signal Cond (R-3 Box), Sys. No. 2

TV Transmitter, Sys. No. 1

TV Transmitter, Sys. No. 2

TV Transmitter Filter Sys. No. 1

TV Transmitter Filter Sys. No. 2

Command Receiver

Beacon, Sys. No. 2

Beacon, Sys. No. 1

Antenna Receiving

Antenna Transmitting

Antenna Coupling and Matching Network

Harness, RF, Receiving

Harness, RF, Transmitting

MBC Switch

Precession Damper

Precession Damper

Despin Timer

Lift-Off Switch Assembly

Rocket Switch

Despin Mechanism

3-201-01

3-202-02

3-203-01

3-203-02

3-301-01

3-301-02

3-302-01

3-302-03

3-303-03

3-303-01

3-401-07

3-401-04

3-402-02

3-402-03

3-403-04

3-405-02

3-406-01

3-407-02

3-408-01

3-409-01

3-410-01

3-411-01

3-502-03

3-503-08

3-503-12

3-504-01

3-505-21

3-506-05

3-507-3

2675

3165

1792

1810

4716

4695

1410

1413

1077

1078

86O

86O

29

28

1115

3O5

3O5

123

893

936

864.7

864.7

29O

549

548

155

360

181

672
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TABLE II-7. SERIAL NUMBERSAND WEIGHTSOF
SPACECRAFTOT-1 COMPONENTS(Continued)

Compon_,nts '....:-'_**a* No. Weight (Grams)

Despin Mechanism

QOMAC Coil

Camera Control Unit, Sys. No. 1

Camera Control Unit, Sys. No. 2

3-507-4

None

3-601-2

3-602-2

Auxiliary Control Unit

Command Address Unit

Camera Clock, S_¢s. No. 1

Camera Clock, Sys. No. 2

Oscillator

Oscillator

QOMAC Clock

QOMAC Control Unit

3-603-2

3-607-2

3-608-19

3-609-22

3-610-$722

3-610-S723

3-614-24

3-615-02

Camera Clock Board, Sys. No. 2

Camera Clock Board, Sys. No. 1

Battery Pack

DC/DC Converter, Sys. No. 1

DC/DC Converter, Sys. No. 2

Power Supply Protection Unit

Voltage Regulator, Sys. No. 1

Voltage Regulator, Sys. No. 2

Current Telemetry Board

Fuse Board

Attitude Horizon Scanner

"Down-Looking" Sensor

"Up- Looking" Sensor

Telemetry Switch

Telemetry Switch

North-Indicator Sensor (Not Connected)

Solar Aspect Indicator

Solar Aspect Indicator Electronics

3-616-03

3-616-02

3-701-06

3-702-01

3-702-05

3-703-02

3-704-01

3-704-02

None

3-728-03

3-901-1

3-901-2

3-902-05

3-902-06

3-923-106

3-924-106

673

2977

998

1121

465

1691

1747

66

84

1786

614

230

208

17,756

873

866

914

718

701

84.5

39

256

204

886

886

960 "

37

647
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SECTION II. SPACECRAFT TESTS

A. INTRODUCTION

Each new or modified unit for the reconfigured spacecraft OT-1 was extensively

tested to ensure that it met the TIROS subsystem prototype- and flight-level specifi-

cations before that unit was accepted for integration with the spacecraft. After space-

craft integration, electrical checkout, and initial alignment and calibration had been

completed, the spacecraft was subjected to the TIROS environmental qualification-
test sequence.

The Environmental Test Committee, comprising four engineering representatives from
NASA and three from AED, was established before the start of the environmental

test program, to review and approve spacecraft performance and test results.

The initial assembly and debugging of spacecraft OT-1 in its original configuration
was completed in March, 1964, and the spacecraft was maintained in a "hold" status

until February 1965, when the reconfiguration was directed by NASA. Assembly and

debugging of the reconfigured spacecraft was completed by April, 1965, and qualifica-
tion procedures were initiated at that time.

Environmental testing of spacecraft OT-1 was initiated on May 3, 1965, and completed

on May 26. Upon completion of environmental testing, final alignment and focus of
the TV cameras were carefully checked, and the field-of-view and distortion charac-

teristics were recorded by using the cameras to photograph a special test target. At
that time the final alignment checks of the attitude horizon scanner and the solar-

aspect indicator were also performed.

The spacecraft was then dynamically balanced and weighed; the center-of-gravity was

determined; and the moments of inertia and the magnetic dipole moments were meas-

ured. On June 9, 1965, based upon results of these checks and measurements, NASA

declared spacecraft OT-1 ready for delivery. The spacecraft was shipped to the

Eastern Test Range on June 14.

After its arrival at the launch site, the spacecraft was carefully tested on a regular

basis. Based on the performance of the spacecraft during these tests, NASA accepted

the spacecraft as being flight-qualified. The spacecraft was successfully launched and
orbited on July 1, 1965.
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B. COMPONENT TESTS

In line with the test philosophy used for the previous TIROS programs, all new corn

ponents were _ubjected to prototype-level testing. Upon receipt of each group of

purchased satellite parts, a complete quality inspection and test was conducted by the

Purchase Material Inspection activity to ensure that the parts met specifications.

It was required that the prototype model of each new component satisfactorily complete

the following series of tests:

(1) Vibration

(a) Thrust Axis: 21 grms, 2 minutes, 20 to 2000 cps.

(b) Lateral Axis No. 1:15 grms, 2 minutes, 20 to 2000 cps, and

(c) Lateral Axis No. 2: 15 g rms, 2 minutes, 20 to 2000 cps.

(2) Sustained Acceleration (Positive and Negative)

(a) Thrust Axis: 50 g, 5 minutes,

(b) 50 g, 5 minutes, and

(c) 50 g, 5 minutes.

-5
(3) Thermal Vacuum (5 x 10 mm Hg)

Lateral Axis 1:

Lateral Axis 2:

(a) Hot cycle: +60°C, 12 hours,

(b) Ambient cycle: +25°C, 12 hours, and

(c) Cold cycle: -15°C, 12 hours.

The flight models of new components were subjected to vibrations of 10 g rms in the

thrust direction and in each of two, mutually perpendicular lateral (transverse) axes.

The frequency spectrum for these vibrations was 20 to 2000 cps, and the duration of

each test was 2 minutes.
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After vibration, the new or modified flight-model components were mounted in a

thermal-vacuum chamber (5 x 10 -5 mm Hg) and checked for satisfactory operation at

the following temperatures and periods:

• -10°C for 12 hours,

• +25 °C for 12 hours, and

• +55 °C for 12 hours.

C. QUALIFICATION TESTING OF SPACECRAFT OT-I

1. General

Before the initiation of the test program on spacecraft OT-1, and after each major

phase of testing, a complete SEPET (Standard Electrical Performance Evaluation Test)

was performed to provide a thorough electrical checkout of the spacecraft. (The

SEPET is described in detail in Volume H of this report. ) The environmental qualifi-

cation tests were also preceded by the initial balancing of the spacecraft and the initial

alignment and calibration effort.

The environmental test requirements for spacecraft OT-1 are listed in Table II-8.

The sequence followed in the TIROS X test program was in accordance with qualification

test procedures and was as follows:

(1) SEPET

(2) Initial Alignment and Calibration

(3) Initial Balancing

(4) SEPET

(5) ENVIRONMENTAL TESTING:

(6) SEPET

(7) ENVIRONMENTAL TESTING:

(8) SEPET

(9) ENVIRONMENTAL TESTING:

First Phase of Thermal-Vacuum Test

Vibration Test

Second Phase of Thermal-Vacuum Testing

H-53



TABLE II-8. SPACECRAFT OT-I ENVIRONMENTAL TEST REQUIREMENTS

Duration

3 days

2 days

Thermal-Vacuum Test:

Temperature Level

+50 °C

0°C

First Phase

Pressure

-5
Not exceeding 5 x 10 mm Hg

at either temperature

Vibration Test

Test Axis Vibration Test Parameters

Three mutually per-

pendicular axes (one

thrust axis and two

lateral axes)

Random

7.7 g rms (equalized to

_: 3 db) 20 to 2000 cps,

2-minute duration,

with sharp roll-off

above 2000 cps

Thermal-Vacuum Test: Second Phase

Duration Temperature Level Pressure

1 day

3 days

+35 °C

0°C

-5
Not exceeding 5 x 10 mm Hg

at either temperature

(I0)

(11)

(12)

(13)

(14)

(15)

SEPET

Final Mechanical Inspection and Electrical Test

Measurement of Magnetic-Dipole Moments

Final Alignment and Calibration

Final Balancing and Weighing

Determination of Moment of Inertia

As can be noted in this listing, thermal-vacuum environmental testing in the TIROS X

test program was divided into two phases, interspersed by vibration testing. The

initiation of vibration testing was dependent on the successful completion of the first
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phase of thermal-vacuum testing, while the initiation of the second phase of thermal-

vacuum testing was dependent on the successful completion of vibration testing.

For the first phase of thermal-vacuum testing, the flight-model battery pack was

removed from the spacecraft and a spare pack substituted. The flight-model pack

was reinstalled for vibration testing and the second phase of thermal-vacuum testing.

The purpose of this procedure, which was also followed in the TIROS VIII and TIROS

IX programs, was to avoid subjecting the flight-model battery pack to long exposure

to the high test temperature involved in the first phase of thermal-vacuum testing,

since such temperature would not be experienced by the battery pack in the space
environment.

For the TIROS X test program, the requirements were made similar to those of the

TIROS VH test program because of the similarity between the two spacecraft. (The

requirements for a vibration survey and flight-level sinewave vibration test of the

integrated spacecraft, such as had been performed on the TIROS IX test program

were removed by NASA directive.) During vibration testing, power was applied only

to those components that would be operative during the launch phase. During thermal-

vacuum testing, the spacecraft was tested on an operational basis at 2-hour intervals

and its responses were carefully monitored and recorded.

Table II-9 presents a summary of the various tests, checks, and measurements per-

formed in the TIROS test program, and the respective completion dates.

2. Initial Alignment and Calibration

The initial alignment of both the attitude horizon scanner and the solar-aspect indicator

was performed on April 23, 1965.

The initial alignment and calibration procedures on the TV cameras were performed

on May 2.

The procedures followed in both the initial and final alignment and calibration efforts

on spacecraft OT-1 were identical, and are detailed in the TIROS X Alignment and
Calibration Handbook. *

*"Alignment and Calibration Data for the TIROS X Meteorological Satellite System, "

Astro-Electronics Division Radio Corporation of America, AED M-2058, 14 June 1965.
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TABLE H-9. SUMMARY OF TIROS X TEST PROGRAM

Test Completion Date (1965)

April 27Initial Balancing

Initial Alignment and Calibration

Attitude Horizon Scanner

Solar-Aspect Indicator

TV Cameras

Environmental Tests

Thermal-Vacuum (First Phase)

Vibration

Thermal-Vacuum (Second Phase)

Measurement of Magnetic-Dipole Moments

Final Alignment and Calibration

Attitude Horizon Scanner

Solar-Aspect Indicator

TV Cameras

Final Balancing and Weighing

Determination of Moment of Inertia

April 23

April 23

May 2

May 12

May 15

May 27

June 2

June 3

June 2

June 3

June 4

June 4

3. Initial Balancing

On April 27, 1965, initial balancing of spacecraft OT-1 was performed.

weights were added as follows:

• Top of Hat:

• Bottom of Hat:

,, Bottom of Hat:

Q Edge of Baseplate:

Balance

690 gms at the 144.5-degree radial, 19.25-inch radius;

493 gms at the 10-degree radial, 20.16-inch radius;

1640 gms at the 350-degree radial, 20.16-inch radius:

216 gms at the 298-degree radial, 19.90-inch radius;
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• Top of Baseplate: 3710 gins at the 20-degree radial, 8.63-inch radius;

• Top of Baseplate: 2360 gms at the 130-degree radial, 15.63-inch radius.

The last two items on this list were counterweights added to the spacecraft to replace

the IR system equipment which had been part of the original configuration fo space-
craft OT-1.

4. Thermal-Vacuum Phases of Environmental Tests

The first phase of thermal-vacuum testing of spacecraft OT-1, i.e., the previbration

phase, was initiated on May 3, 1965, at the 50 °C temperature level. Testing was

halted on May 4, when it was observed that the high temperature resulted in marginal

performance of TV camera No. 1 and excessive current drain in the tape recorder

No. 1 power supply.*

The spacecraft was removed from the thermal-vacuum chamber on May 5. On May 6,

following an investigation of the problem and the implementation of the required minor

modification, the spacecraft was reinstalled in the chamber. Thermal-vacuum testing

was resumed on May 7, and on May 12 the first phase of thermal-vacuum testing was

successfully completed. On May 13, the flight-model battery pack was installed, and

on May 14 a full SEPET was satisfactorily performed on the spacecraft.

On May 18, following the successful completion of vibration testing and a full SEPET,

the second phase of thermal-vacuum testing was initiated. Testing was halted on

May 22 because a change had been noted in the deviation sensitivity and carrier fre-

quency of TV transmitter No. 2 during the first several seconds of transmitter opera-
tion. The condition was investigated, and it was decided to resume the qualification

cycle when it was determined that the condition was not indicative of a problem in the

transmitter and did not result in the loss or degradation of normal data.

Thermal-vacuum testing was re-initiated on May 25 and successfully completed on

May 27. On May 28, the spacecraft was successfully subjected to a full SEPET.

Figure II-21 shows spacecraft OT-1 prepared for thermal-vacuum testing.

5. Vibration Phase of Environmental Tests

On May 15, 1965, after the flight-model battery pack had been installed, spacecraft

OT-1 was subjected to vibration testing in the thrust axis and both of two mutually

*This condition and the subsequent actions are detailed later in this section under

"History of Testing and Qualification".
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Figure 11-21. Spacecraft OT- 1 I’rcpmed for Thermal-Vacuum Testing 
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perpendicular lateral axes, with satisfactory results. Random vibration was utilized,

and the test parameters, which were the same in each axis of vibration, were as

follows: 7.7 gms (equalized to ± 3 db), 20 to 2000 cps, 2-min duration, with sharp
roll-off above 2000 cps.

For vibration testing, the spacecraft was mounted to the 6-inch Douglas attach fitting

(including the 1-inch spacer and separation spring) by means of a Marman clamp.

Post-vibration examination of the Marman clamp and separation plane interfaces

uncovered indications of galling. However, the extent of the galling was minor,

bordering on simple burnishing of the metal surfaces.

On May 17, following the successful completion of vibration testing, a full SEPET

was performed on spacecraft OT-1, with satisfactory results.

Figure II-22 is a block diagram of the test set-up used in the vibration testing of
spacecraft OT- 1.

6. Final Checks and Measurements

a. General

A series of final checks was performed on spacecraft OT-1 after the completion
of environmental testing. These checks included:

(1) a mechanical inspection to ensure that all fasteners were tight, that all elec-

trical connections were secure, and that the spacecraft was free from foreign
material, and

(2) an electrical test of systems operation (basically a repeat of the SEPET).

After the final checks were completed, the spacecraft's magnetic dipole moments

were measured, final alignment and calibration procedures were completed, final
balancing and weighing was performed, and the spacecraft's moment-of-inertia was
determined.

The post-environmental-testing procedures on spacecraft OT-1 were initiated on

June 2, 1965, and completed on June 8, with a final inspection of the spacecraft. On

June 9, at a meeting held at AED with NASA representatives, the spacecraft was ac-

cepted by NASA; and on June 11, after the spin-up rockets had been installed, the

spacecraft was prepared for shipment. On June 14, spacecraft OT-1 was shipped to
the launch site at Cape Kennedy.

The procedures used in the final alignment and calibration efforts were essentially
the same as those used in the initial efforts. Figure H-23 shows the location and
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Figure II-22. Vibration Test Set-Up

orientation of (1) the TV cameras, (2) the sensors composing the attitude horizon

scanner, and (3) the solar-aspect indicator on TIROS X.

b. Measurement of Magnetic-Dipole Moments

On June 2, 1965, the residual spin axis magnetic moment of spacecraft OT-1 was

measured, with the spacecraft operating in the standby mode. The residual moment

was then cancelled by the addition of a permanent magnet with a total strength of

1.14 ampere-turns-meter 2. The net magnetic moments for the various operating

modes of the spacecraft were then measured. The values obtained are listed in

Table II-10. The magnetic dipole moments generated by the MBC coil for each posi-

tion of the MBC switch were also measured. The values obtained are listed in Table

II-11, along with the associated telemetry voltages. The sum of the applicable values

in Tables II-10 and II-11 added to the residual magnetic moment for the standby mode,

yields the instantaneous, total magnetic dipole moment along the spin axis for any

single operating mode or combination of modes.

c. Final Alignment and Calibration

(1) Final Alignment of TV Cameras

The deviation between the optical and nodal axes was measured on both

TV cameras on June 3, 1965. (The nodal axis is defined as a line which is parallel
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TABLE II-10. SPIN AXIS MAGNETIC DIPOLE MOMENTS ON TIROS X

Magnetic Moment

Operating Mode (ampere_turns_meter2)

Standby: night

Clock I: remote

timing

Clock II: remote

timing

Direct Camera I

Direct Camera II

QOMAC Coil :

Clock I:

Clock I:

remote - positive

- negative

off - positive

- negative

4 0.07

0.00

0.00

+ 0.06

0.00

0.03

+ 0.13

+27.80

-27.50

+27.80

-27.50

TABLE II-11.

Switch Position

0 (or 12)

1

2

3

4

5

6

7

8

9

10

11

*Calculated Values

MAGNETIC DIPOLE MOMENT PRODUCED FOR EACH POSITION OF

THE MBC SWITCH

Magnetic Dipole Moment

(ampere-turns-meter 2)

0.00

+0.19

+0.44*

+0.76*

+1.56"

+8.10

0.00

-0.19

-0.44*

-0.76*

-1.56"

-8.41

Telemetered Voltage

(volts)

0

0.25

0.75

1.25

1.75

2.25

0

2.50

2.00

1.50

1.00

0.50
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to the spin axis and which passes through the front nodal point of the camera lens, as

shown in Figure II-24.) Both the deviation angle, p, and the direction of deviation,

e, were measured. The values obtained were as follows:

Camera p O

No. 1 0 ° 14' 32" 302 °

No. 2 0 ° 7' 52" 283 °

(2) Final Calibration of TV Cameras

Figures H-25a and b are direct mode photographs taken with cameras

No. 1 and 2, respectively, on June 3, 1965. These photographs were used to determine

the amount of distortion being introduced by the lenses of the two cameras, and to

ensure the centering of the vidicon fiducial markings on the optical axis of each lens.

In addition, the subcarrier frequency-deviation for each camera system

was checked to determine the effects of length of operating time. These checks were

performed at various levels of scene brightness, and the results are presented in

Figures II-26 and II-27.

Both cameras were then checked to determine the effects, in each di-

rection of shutter motion, of variations in scene brightness upon subcarrier fre-

quency. The results of these tests are shown in Figures II-28 and II-29.

Figure II-30 shows spacecraft OT-1 mounted in the calibration test

fixture.

270 °

INTERCEPT OF
TARGET AND
CAMERA

OPTICAL AX IS ---_

180 ° _ 0 o

,/)¢
//.J TARGET AND

OPTICAL AXIS/ f

AXIS

_t T 90°ELEVlSION

CAMERA

Figure II-24. Deviation of TV Camera Optical and Nodal Axes
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Figure 11-2 5a. Distortion/C alibr ation Photograph, 
Camera  No. 1 (Direct Mode) 

Figure 11-25b. Distortion/Calibration Photograph, 
Camera No. 2 (Direct Mode) 
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Figure II-30. Spacecraft OT-1 Prepared for Camera  Calibration Tes ts  

(3) Final Alignment of Solar-Aspect Indicator 

On June 2, 1965, the angle between the x-y plane and the mechanical axis 
of the solar-aspect indicator, Serial No. 3-924-06, was measured and found to be 
25" 12'. (The orientation of the projection on the x-y plane of the normal to the solar- 
aspect  sensor  is not important i n  the determination of y and, therefore,  w a s  not 
measured during final calibration.) 

The manufacturer of the solar-aspect indicator had previously supplied 
calibration data which gave the binary-coded input from the solar-aspect indicator as 
a function of the sun angle, based upon a nominal value of 25 " 12' fo r  the alignment of 
the senso r  axis with respect  to the x-y plane. Following final alignment of the solar-  
aspec t  indicator, the data was modified to take into account the measured value (i. e., 
25"  12') of the sensor  orientation. 
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(4) Final Alignment of the Attitude Horizon Scanner

On june 3, i965, the orientation of the two sensors comprising the

attitude horizon scanner was measured, and the values obtained were as follows:

Sensor No. i

(Serial No. 3-901-2

Up-looking Sensor)

Sensor No. 2

(Serial No. 3- 901-1

(Down-looking Sensor)

• Displacement of 40 ° 02'

mechanical axis from

x-y plane

40 ° 02'

• Deviation of optical -1'

axis from mechanical

axis

-7'

• Displacement of optical 40 ° 01'

axis from x-y plane

39 ° 55'

(5) Final Balancing and Weighing of Spacecraft OT-1

On June 4, 1965, final balancing and weighing of spacecraft OT-1 was

performed. Balance weights were added as follows:

• Edge of Baseplate:

• Top of Hat

(19 inches above

baseplate plane) :

96.0 gms at 322-degree radial;

3.1 gms at 176-degree radial;

11.0 gms at 97-degree radial;

15.0 gms at 101-degree radial;

3.0 gms at 310-degree radial.

The total weight of the balance weights added was 128.1 gms, and the
• 9

dynamic balance of the spacecraft was then within a maximum of 80.4 ounce-inches ",

i.e., within the specified limits of 110 ounce-inches 2.

The final weight of the spacecraft (without the despin weights) was then

measured and was found to be 287.55 pounds, and the center-of-gravity of the space-

craft in the space configuration was found to be 10.01 inches above the separation

plane.

(6) Determination of Moment of Inertia

The spacecraft's moments of inertia were also determined on June 4.

The data required for making these determinations was obtained by attaching the
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spacecraft to a bifilar suspension system as shown in Figure H-31 and measuring the

period of the resultant pendulum. In the measurements of the moment of inertia,

various configurations and attitudes were covered. First, the moment of inertia

about the spin axis was measured while the despin weights were not attached, i.e.,

the spacecraft was in the space configuration. Next the moment of inertia was again

measured about the spin axis, but in this case the despin weights were included so that

the spacecraft would be in the same configuration as before separation of the third-stage
rocket.

The maximum and minimum transverse moments were then measured

with and without the despin weights, and the ratio of the maximum transverse axis

moment to the spin-axis moment was determined for both cases, i.e., with and with-

out despin weights.

The results obtained th this series of measurements are presented in
Table II-12.

7. History of Testing and Qualification

a. Efforts Prior to Reconfiguration of Spacecraft OT-1

On October 25, 1963, preliminary partial debugging of spacecraft OT-1 in the

original configuration was initiated. At that point the spacecraft was configured es-

sentially like TIROS VII, and was planned for use in a 58-degree orbit. Functional

checks of the spacecraft subsystems were performed during November 1963, and de-

bugging continued through December.

In January 1964, the spacecraft hat and baseplate were integrated and tested, and

a preliminary SEPET and an RF-interference test were performed in February.

During March, dummy weights for the IR equipment were installed, and the initial

balancing of the spacecraft was performed. At this time the spacecraft was also sub-

jected to thermal tests in a Tenney chamber, with satisfactory results. In addition

satisfactory performance of the rocket-firing circuits, the precession-damper cir-

cuits, and the despin mechanism squib-firing circuits was verified, and initial optical

alignment of sensing units was performed.

At the end of March, 1964, assembly and debugging of spacecraft OT-1 had been

completed and the spacecraft was ready for environmental qualification tests; however,

the spacecraft was placed in a "hold" status by NASA directive.

The "hold" on spacecraft OT-1 was rescinded in March, 1965. During the period

that the "hold" had been in effect, the spacecraft was subjected to periodic checks to

ensure its readiness for qualification testing.
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Figure 11-31. Spacecraft OT-1 in Bifilar Suspension System 
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TABLE H-12. MECHANICAL AND PHYSICAL PARAMETERS OF TIROS X

Parameter

Spacecraft Weight

Moment-of-Inertia

(a) About Spin Axis

(b) About Transverse Axis

(Maximum)

(c) About Transverse Axis

(Minimum)

(d) Ratio of (b)/(a)

i_,_, .Tacation of Maximum
Moment of Inertia

Center of Gravity

(above separation plane)

Dynamic Balance

Residual dynamic imbalance

(maximum}

With Despin

Weights

290.07 lbs

163. 241 lbs-in-sec 2

118. 468 lbs-in-sec 2

112. 786 lbs-in-sec 2

72.5 percent

Without Despin

Weights

287.55 lbs

160. 453 lbs-in-sec 2

118. 388 lbs-in-sec 2

2
109.83 lbs-in-sec

73.8 percent

245 ° (with keyway in separation ring at 90 °

and angles increasing clockwise with space-

craft viewed from hat)

9.99 inches 10.01 inches

80.4 oz-in 2 (0.00041 radian displacement

between geometric and inertial axes)

b. Reconfiguration and Preparation of the Spacecraft for Calibration
and Qualification Tests

In March 1965, spacecraft OT-1 was reconfigured for use in a near-polar orbit.

This effort included the following:

(1) addition of the QOMAC system, the solar-aspect indicator, and the attitude

horizon scanner,

(2) modification of the MBC switch,

(3) modification of the camera clocks to change the picture interval in remote

sequence from 0.5 minute to 1.0 minute (increasing the duration of a 32-

picture remote sequence to 32 minutes), and
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(4) removal of the IR-equipment dummy weights from the assembled spacecraft

and disconnection of the north - indicator subsystem.

The assembly of the reconfigured spacecraft was completed on March 18, 1965,

and on March 23, 1965, debugging was initiated. On April 11, after debugging had

been completed, a functional check of all subsystems was performed with satisfactory

results. On April 12 and 13, Spacecraft OT-1 was successfully subjected to thermal

checks at +50 °C, 0°C, and -5 °C in a Tenney chamber.

On April 15, 1965, an RF-interference check was successfully performed on

Spacecraft OT-1, and the mechanical "tie-down" of spacecraft units was performed

in the period from April 16 through 26.

c. Calibration and Qualification of Spacecraft OT-1

On April 27, 1965, rough balancing of Spacecraft OT-1 was completed. On

April 28, an RF-interference check was performed at the RF tower. When the space-

craft was returned from the RF tower, it was observed that a resistor in camera

clock No. 2 had been shorted because of insufficient clearance between a metal holding

clip on the clock case and the case of a silicon-controlled rectifier. The clips on all

three clocks, i.e., the two camera clocks and the QOMAC clock, were modified to

provide greater clearance, and camera clock No. 2 was replaced with a flight-qualified

spare.

On May 1, 1965, a full SEPET was successfully performed; and, on May 2, the

field-of-view test on spacecraft OT-1 was completed with satisfactory results. On

May 3, the spacecraft was installed in the thermal-vacuum chamber for the initiation

of environmental testing.

On May 4, after the spacecraft temperature had been stabilized at +50°C, it was

observed that (1) the video level from camera No. 1 was 10 percent of the normal

value, and (2) an exponential increase in the load-bus current occurred at a point

about 80 percent through the playback of video from tape recorder No. 1. Both con-

ditions were repeatable, and at +45 °C camera No. 1 video was at about 30 percent of

the level at room temperature. At this temperature level, the exponential increase in

the load-bus current did not occur.

Thermal-vacuum testing was, therefore, halted; and, on May 5, the spacecraft

was removed from the thermal-vacuum chamber and camera No. 1 and the tape re-

corder power converter in camera system No. 1 were removed to permit an investi-

gation of the problem area.

A transistor amplifier stage in the video amplifier section of camera No. 1 was

found to be improperly biased. When the camera was operated at elevated temperatures,
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the transistor approached saturation, causing "clipping" of the video signal. The

biasing resistor was changed in order to center-bias the amplifier and permit suffi-

cient operating margin over the temperature range from -10 °C to +65 °C. Following

this modification, the camera was successfully subjected to thermal tests in the

Tenney chamber, and reinstalled on the spacecraft.

An examination of the tape recorder power converter indicated that one of the

two 2N174A power transistors in the DC inverter had excessive collector-to-baseplate

leakage. In order to provide a path for the collector to base leakage current for both

2N174A DC inverter transistors, a 68-ohm resistor was added to "tie down" the com-

mon base point to ground.

The same modification had been made to the tape recorder power converters on

TIROS IX, but had not been made to those on spacecraft OT-1 since the duty cycle for

the units on the latter was only approximately one-half that of the units on TIROS IX.

Tests of the unit after the 68-ohm resistor was added failed to duplicate the condition.

A qualified spare power converter was modified accordingly and mounted on the space-

craft in place of the unit which had been removed from side one. In addition, the

ti_-onm remstor wa_ ai_o added i,u _L_ Md_ t-,_, pc,;;-cr converter.

On May 6, the spacecraft was re-installed in the thermal-vacuum chamber for the

resumption of environmental tests. The 36-hour test at +50 °C was initiated on May 7

and completed on May 10, with satisfactory results. On May 12, the 48-hour test at

0 °C was successfully completed, marking the end of the first phase of thermal-vacuum

testing.

On May 13, the spacecraft was removed from the thermal-vacuum chamber and

the flight-model battery pack was installed. On May 14, a SEPET was satisfactorily

performed on spacecraft OT-1.

On May 15, random vibration testing in three mutually perpendicular planes was

performed with satisfactory results (at the test levels detailed earlier in this dis-

cussion). On May 17, a SEPET was satisfactorily performed on the spacecraft.

On May 18, spacecraft OT-1 was installed in the thermal-vacuum chamber for

the second phase of thermal-vacuum testing. On May 19, the 24-hour test at +35 °C

was successfully performed. On May 20, testing at 0°C was initiated. However, on

May 22, after 48 hours of testing at this level had been accomplished, testing was

halted because of an anomoly in the operation of TV transmitter No. 2, and the space-
craft was removed from the thermal-vacuum chamber.

Carrier deviation with TV transmitter No. 2 had been observed to take a sudden

increase of approximately 30 percent approximately 15 seconds after the start of

playback. Further tests showed that the length of time from initiation of transmitter

B+ until the deviation increased varied with each playback from less than 1 second to
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as much as 18 seconds. A check of the transmitter showed that (1) the carrier fre-

quency was 30-kc low until the time that the deviation increased, and (2) the carrier

frequency shift also occurred when the camera system was operated in the direct

mode. TV transmitter No. 1 was tested and showed similar results, along with four

flight-qualified spare transmitters. The anomaly was traced to a cold cathode voltage

regulator tube in the transmitter. This tube was found to have an inconsistent firing

time which was, to a great extent, independent of starting voltage, temperature, and

frequency of operation.

Further tests performed by means of interrogations of TIROS VII and VIII indi-

cated the condition was, in fact, normal and had no adverse effect on picture trans-

mission. Based on these findings, the environmental committee decided that the

qualification cycle should be resumed.

Spacecraft OT-1 was placed in the thermal-vacuum chamber on May 25, and en-

vironmental testing was reinitiated on May 26. On May 27, the spacecraft completed

36 hours of testing at 0 °C with satisfactory results. This marked the successful com-

pletion of environmental tests on the spacecraft. Table II-13 presents a summary of

thermal-vacuum tests on spacecraft OT-1, while Table II-14 presents a chronological

summary of all environmental testing of spacecraft OT-1.

On May 28, a full SEPET was performed on spacecraft OT-1 with satisfactory

results.

On June 1, 1965, the magnetic dipole measurements on the spacecraft were

made, utilizing the magnetometer and the spherical dipole testing machine, and a

permanent magnet was added to cancel out the spacecraft's residual dipole.

TABLE II-13. SUMMARY OF SPACECRAFT OT-1 THERMAL-VACUUM TESTS

Temperature

Level

(Degrees C)

+5O

+35

0

Test

No. 1

7.5

Test Duration

(hours)

Test Test

No. 2 No. 3

72 --

-- 24

48 54

Test

No. 4

36

Total

Test

Duration

(hours)

79.5

24.0

138.0

Specification

Requirements

(hours)

72

24

120
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TABLE II-14. CHRONOLOGICAL LISTING OF SPACECRAFT OT-1
ENVIRONMENTA L TESTS

Test

Initiation

Date (1965)

May 4

May7

May 10

May 15

May 18

May 20

May 25

Environmental Test

Thermal-Vacuum Testing at 50°C

Thermal-Vacuum Testing at 50°C

Thermal-Vacuum Testing at 0°C

(1st Phase of Thermal-Vacuum Testing Completed

on May 12)

Vibration Testing, Random Vibration in Three

Mutually Perpendicular Axes

Thermal-Vacuum Testing at 35°C

Thermal-Vacuum Testing at 0°C

Thermal-Vacuum Testing at 0°C

(Environmental Testing Completed on May 27)

On June 2, camera brightness and final alignment tests were performed; and, on

June 3, the camera field-of-view tests were completed.

Final alignment of the attitude horizon scanner and the solar-aspect indicator were

performed on June 3, 1965.

On June 4, the final balancing of the spacecraft and the center-of-gravity, final-

weight, and moment-of-inertia measurements were performed.

On June 5 and 7, respectively, an abbreviated SEPET and a Task 4 test were suc-

cessfully completed. On June 8, the spacecraft was subjected to a final inspection.

On June 9, the Environmental Test Committee met and agreed that spacecraft

OT-1 had successfully passed all environmental test requirements. The spin-up
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rockets were added to the spacecraft on June 11, and the spacecraft was installed in

a shipping container.

On June 14, 1965, at NASA direction, spacecraft OT-1 was shipped to the launch

site at the Eastern Test Range.
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PART III. GROUND STATIONS
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PART III. GROUND STATIONS

SECTION I. DESIGN OF GROUND-STATION COMPONENTS

A. INTRODUCTION

In general, ground operations for the TIROS X satellite system consist of (1) tracking

the position of the satellite; (2) commanding the satellite instrumentation to perform

specific functions in a given order; and (3) receiving, storing, and processing data re-

ceived from the satellite. These operations are performed and coordinated by a ground

complex which includes the following: (1) two primary Command and Data Acquisition

(CDA) stations, one located at Fairbanks, Alaska and the other at Wallops Island, Vir-

ginia; (2) a secondary CDA station located at the AED Space Center near Princeton,

New Jersey; and (3) selected stations of the NASA Minitrack Network, including an

auxiliary station (for the initiation of clock-start) at the Minitrack station in Santiago,

Chile. In addition, a checkout (Go, No-Go) station, installed at the launch site at the

Eastern Test Range, Cape Kennedy, Florida, is included in the ground complex for

performing prelaunch checkout of the satellite. * The CDA stations and the Go, No-Go

equipment were used in previous TIROS programs.

The primary purposes of the CDA ground stations are as follows:

(1) To transmit radio signals to the satellite for programming its operation and
data transmission.

(2) To receive signals carrying the television, attitude, and telemetry data from
the satellite.

(3) To extract the television, attitude, and telemetry data from the carrier

signals.

(4) To record and reproduce, in permanent form, the received data and to provide

a means of identifying that date.

* The ground complex includes other facilities involved in satellite command program-

ming and in data processing. However, the facilities mentioned here are those that
are in direct communication with the satellite.
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(5) To relay the transmitted attitude and telemetry data, along with the station's

status reports, to the NASA TIROS Technical Control Center (TTCC) located

at the Goddard Space Flight Center, Greenbelt, Maryland.

The precision tracking capabilities of the selected stations of the Minitrack Network

are used to permit an accurate determination of the satellite's orbital parameters.

B. FUNCTIONAL DESCRIPTION

The components of the CDA stations are divided into three functional groups: namely,

the satellite command and control equipment: the data-receiving components; and the

data-processing, display, and recording components.

The command and control equipment controls the satellite functions by means of an

amplitude-modulated command transmitter. Audio control tones, each tone repre-

senting a different command function, are used for modulating the command transmit-

ter. Three modes of operation are provided for commanding the satellite; namely,

manual-operate, manual-start, and automatic. In the manual-operate mode, which is

normally used only during testing, all satellite commands are initiated manually. In

the manual-start mode, only the program sequences are started manually: once the

sequence starts, the commands within the sequence are initiated automatically. In the

automatic mode, all sequences and all commands within a sequence are transmitted

without manual intervention and at preselected times. The times are synchronized

with the time signals transmitted by WWV.

The TV-picture receiving circuit consists of two receivers that are connected in po-

larization diversity to minimize signal fading due to satellite spin and attitude. The

telemetry receiving circuit consists of four receivers. Two of the receivers are tuned

to the upper telemetry frequency, and two are tuned to the lower telemetry frequency.

Two receivers, one of each pair, are connected in polarization diversity.

Each TV picture received is displayed on a kinescope which is mounted in the display

unit. A panel framing the kinescope is equipped with (1) a clock that provides a real-

time indication and (2) legends and numbers that are illuminated to indicate the mode

(direct camera or tape playback), camera source (1 or 2), frame number, and orbit

number for each TV picture. Mode and camera-source information are derived from

outputs of the command and control equipment. The frame number is generated by a

binary counter, which is stepped by the vertical-sync pulse of each TV picture received.

The frame number, consisting of six binary bits, and the mode and camera-source data,

consisting of three binary bits, are stored in a shift register from which a serial out-

put and a parallel set of outputs are taken. The parallel outputs control read-out lamps

which are photographed along with the kinescope display; the serial output keys tone

oscillators whose outputs are recorded on magnetic tape to indicate camera source and
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frame information. The orbit number is displayed by means of illuminated, manually

set dials. A camera, mounted on the display unit, is used to photograph both the pic-

ture displayed on the kinescope and the associated identification data.

The recording devices used at the primary TIROS X ground stations are (1) two Ampex

Model FR100K, seven-channel, tape recorders; (2) an Esterline Angus Model AW

events recorder; and (3) a Sanborn, two-channel, paper-chart recorder.

The tape recorders record the TV pictures received from the satellite and the related

identification information. Each recorder operates at a speed of 60-inches-per-

second, using tape 1/2 inch wide. The tape recorders are remotely controlled by the

command and control equipment to start automatically at the beginning of each ground-
to-satellite contact.

The events recorder provides a real-time recording of the initiation of both the various

satellite commands and the other vital ground-system operations.

The two beacon subcarrier signals containing telemetry information are sent from the

beacon receivers to the Sanborn recorder, and the beacon No. 2 signal is applied

through the Frequency Shifter Unit (FSU) before being mixed with the beacon No. 1

signal for transmission over the SCAMA line.

C. PHYSICAL CONFIGURATION

Ground-station components are mounted on roll-out assemblies located in vertical

racks which have an overall height of 65-3/8 inches. Each roll-out assembly consists

of a front panel and two vertically mounted chasses; the vertical chasses are arranged

so that the tubes face inward and the wiring faces outward. This combination of chas-

sis mounting and roll-out slides facilitates maintenance and trouble-shooting. The

vertical mounting of the chasses also provides a chimney effect which materially as-

sists in component cooling. (The equipment racks at Wallops Island are mounted in

the telemetry building.)

D. GROUP FUNCTIONAL DESCRIPTIONS

1. Introduction

Since the TIROS X CDA ground stations are essentially identical to those used for the

TIROS IV, V, VI, and VII programs, the following functional descriptions are limited

to block-diagram discussions. Detailed circuit descriptions are contained in the TIROS

I through VII final reports.
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2. Satellite Command and Control Equipment

a. Introduction

The satellite command and control equipment provides a reliable means of turning

on the command transmitter, programming the antenna to follow the predicted path of

the satellite, turning on the TV and data recorders, initiating the transmission of con-

trol tones to the satellite, and turning off the equipment at the end of a satellite-to-

ground contact. Figure III-1 is a functional block diagram of this equipment.

Functionally, the equipment consists of two separate programming circuits, one

program selector, and one timing circuit. The timing circuit, consisting of the mas-

ter clock, the WWV receiver, the WWV comparator, and the frequency standard, is

common to both programming circuits. The positioning of switches and control relays

on the program selector determines which programming circuit is used for a specific

satellite pass.

The ground-station components of the satellite command and control equipment

provide for the selection of three modes of operation: namely, automatic, manual-

start, and manual-operate. Briefly, the system operation during these operational

modes is as follows;

(1) Automatic: During this mode, the program is set up in advance on the

control equipment. Each program sequence starts in response to an

alarm signal from the master clock and proceeds to its conclusion with-

out the aid of an operator.

(2) Manual-Start: During this mode, the program is also set up in advance.

The only difference between manual-start and automatic is the use of

pushbutton controls in place of the master clock for the initiation of the

alarm signals.

(3) Manual-Operate: During this mode, the program is not set up in advance.

Instead, the program sequences are initiated by the use of pushbutton

controls which are further used to carry the sequence through to com-

pletion.

The use of two, separate, programming circuits permits two complete programs

(A and B) to be set up in advance. The program sequences used in TIROS X and the

alarms controlling these sequences are as follows:

(1) Direct Camera Sequence I: Direct Camera Sequence I (DCS-I) is controlled

by alarm number 1. This program sequence is used when the TV pic-

tures are to be taken while the satellite is in range of a ground station.
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III-5



In DCS-I, the pictures are transmitted directly to ground, bypassing the

satellite's tape recorders. Either one of the satellite's TV cameras can

be commanded to take pictures at 30-second intervals. Picture-taking
commands can be alternated from one camera to the other at intervals of

30 seconds. The length of the sequence can be varied between 0.5 and
8.0 minutes in 0.5-minute increments.

(2) Playback and Clock-Set Sequence: The playback and clock-set sequence

is initiated by alarm number 2 and includes the following: (1) command-

ing the satellite to read out pictures which have been recorded on the sat-

ellite's tape recorders since the last ground-to-satellite contact, and

(2) sending set pulses to the satellite clocks and, at the conclusion of the

set pulses, a start pulse for both clocks.

(3) Direct Camera Sequence II: Whenever Direct Camera Sequence II (DCS-

II) is programmed, it follows directly after the playback sequence. In

addition to providing for the same program variations as DCS-I, this se-

quence provides for the automatic transmission of a predicted number of

attitude-control pulses.

(4) Clock-Start (Santiago, Chile). A clock-start capacity is provided at the

NASA Minitrack station at Santiago, Chile. This capability can be used

to start the clocks only during a direct-camera sequence.

In addition to the functions listed for each sequence, any of the program sequences

can include the sending of manually initiated "Fire Rockets" commands, as well as

manually initiated commands for stepping the satellite's MBC switch.

b. Timing Circuits

The timing circuits consist of the alarm unit, the master clock, the WWV receiver,

the WWV comparator, and the frequency standard. These circuits provide the time

standard for both ground station and satellite, and generate the alarm signals which

initiate the various sequences of an automatic program.

c. Control-Tone Generator

This unit generates the audio-control tones used to represent the various command

functions.

d. Remote-Picture Time-Set Unit

This unit generates, during the playback sequence, the pulses required to set each
of the satellite clocks.
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e. Antenna Programmer

The antenna programmer utilizes a linear interpolation of ephemeris data, taken

at 1-minute intervals, to aim the tracking antenna at the point where the satellite is

expected to appear over the horizon. In addition, the programmer can be used to di-

rect the tracking antenna to follow the predicted path of the satellite. Use of the an-

tenna programmer ensures faster antenna lock-on by elimination of the need for hori-

zon scanning at the start of each satellite pass. The antenna programmer also pre-

vents loss of data when the auto-tracking contact is prematurely interrupted.

f. Program-Selector and Power-Control Unit

This unit provides for (1) selection of either Program A or Program B for trans-

mission to the satellite,and (2) control of both filament and plate voltages to the two

programmer circuits.

g. Relay Power Supply

This unit provides the 24-volt power required for the energization of the relays

in the ground-station command and control equipment; it also provides for distribution

of the 115-volt, 60-cps, a-c power to these components.

h. Command Transmitter and Remote-Control Panel

The Collins Model 242F-2, 200-watt, amplitude-modulated, VHF transmitters

are used for transmission of the command signals. Though two of these transmitters

are located at each ground station, only one can be used at any given time. The trans-

mitters are operated remotely, due to the requirement that they be located within 100

feet of the transmitting antenna to avoid excessive power loss in the RF cabling.

A remotely operated coaxial switch is used to switch the antenna from one trans-

mitter to the other. A low-pass filter is located at the output of the switch for the re-

duction of the spurious radiation found above the command frequency.

Each command transmitter is equipped with an RF detector used for alignment

purposes. The output of the detector, a d-c current, is indicative of the transmitter

power output. The detector output also contains the detected command tones, which

are amplified to drive a loudspeaker in the transmitter control panel; the loudspeaker

permits monitoring of the outgoing command tones.

i. Command Programmer

The command programmer provides the means for setting-up and storing the de-

sired satellite program. When an alarm signal is received from the alarm unit, the
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command programmer supplies related portions of the stored program to the control-

tone generator, the antenna programmer, the remote-picture time-set, the tape re-

corders, and the command transmitter. Two command programmers are installed at

each CDA station.

The programmer permits presetting of program sequences and provides for auto-

matic read-out of these sequences at preselected, electrically computed times. The

design of the programmer reduces the possibility of human error by affording an op-

portunity to check preset programs and by minimizing the need for human operations

during a satellite-to-ground contact.

Other design features include provisions for manually starting and controlling

each of the program sequences. These features are not intended to be used under

normal conditions; they are included to provide control of the satellite during special

or emergency programming.

j. Clock-Set-Pulse Demodulator

This unit is used in conjunction with back-up Berkeley counters and provides an

accurate count of the set pulses sent to the satellite clocks. The input for the clock-

set-pulse demodulator is received from the RF-detector circuit of the command

transmitter. Circuits within the demodulator separate the detected clock-set pulses

from the remainder of the detected command tones and then apply these pulses to the

Berkeley counters.

k. Clock-Start Timer

The clock-starting equipment installed at the NASA Minitrack station at Santiago,

Chile, permits pictures to be taken over otherwise unobtainable areas of the earth.

The equipment includes an appropriate command transmitter and the necessary timer.

The clock-start timer is used to generate address tones, direct-camera tones, and

start-clock tones.

3. Data Receiving Components

a. Introduction

The TIROS X data receiving equipment at the ground stations comprises the TV

receivers, the beacon and telemetry receivers, and the TV diversity combiner. Ex-

cept for the diversity combiner, the equipment selected for data receiving was in

either military or commercial use at the start of the TIROS programs.
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b. TV Receiving Circuits

The TV receiving circuits (shown in the block diagram in Figure III-2) consist of

the following: (1) two bandpass filters; (2) two distribution amplifiers; (3) two TV re-

ceivers, tuned to 235 Mc; and (4) a diversity combiner. The horizontally and verti-

cally polarized outputs of the tracking antenna are applied through bandpass filters

before being applied to the respective TV receivers. The bandpass filters are used to

prevent interference from the command transmitter.

SPARE

TV

RECEIVER

COMMAND

YAG I

TO 108 MC

SAND PASS

FILTERS

HORIZONTAL

POLARIZATION

VERTICAL

POLARIZATION

_ DISTRI BUTiON HOR
AMPL IFI ER

]

1RECEWER

TO DATADIV[R_ITY TV SUB-CARRIER i- PROCESSING

COMBINER AND SUN ANGLE DISPLAY
DATA COMPONENTS

Figure III-2. TV Receiving Circuits, Block Diagram

The outputs of the two TV receivers are applied to the diversity combiner. The

diversity combiner either selects the stronger of its two signal inputs or combines the

two inputs for application to the succeeding stages of the TV receiving circuits.

c. Beacon and Telemetry Receiving Circuits

The beacon and telemetry receiving circuits (shown in the block diagram in Figure

III-3) consist of (1) two bandpass filters, (2) two preamplifiers, (3) two frequency con-

verters (136 to 30 Mc), (4) two multicouplers, (5) four R-390A receivers, (6) a telem-

etry receiver control, and (7) a two-channel Sanborn recorder.

All of this equipment is similar to that used in the TIROS VH program.

For the reception of both beacon and telemetry channels (136.23 and 136.92 Mc),
two of the receivers are tuned to 30.23 Mc and the other two to 30.92 Mc. One re-

ceiver from each of the two frequency groups receives its signal from the horizontally

polarized feed of the antenna system; the other receiver receives its signal from the

vertically polarized feed. The two receivers of each frequency group are connected

together in polarization-diversity combination.
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Figure III-3. Beacon and Telemetry Receiving Circuits, Block Diagram

The 1300-cps, frequency-modulated, subcarrier-output signals of the receivers

are applied to the Beacon Data Control Unit (BDCU). This unit permits the selection

of the desired group of receivers for connection to a particular channel (A or B) of

the Sanborn recorder.

The subcarrier signals are demodulated and resulting telemetry information re-

corded on the Sanborn recorder. The telemetry-receiver control also indicates the

present level of AGC and permits monitoring of the receiver audio outputs.

4. Data-Processing, Display, and Recording Components

a. Introduction

The data processing, display, and recording components used for the TIROS X

program are the same as those used for TIROS III. Figure III-4 is a block diagram of

this equipment. These components provide for (1) the demodulation of the TV signals

from the satellite,and (2) the recording of the resultant TV pictures on film and mag-

netic tape. These components also provide identification and orientation information

(frame number, orbit number, satellite-camera identification, picture-taking sequence

and real time) for each picture. A playback system, included to facilitate meteorolog-

ical interpretation of the pictures received from the satellite, permits the generation

of both positive and negative duplicate pictures.
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_ DEFLECTION & BLANKING PULSES

Figure III-4. Data Processing and Display Components, Block Diagram

The input signal to the data-processing, display, and recording components is the

frequency-multiplexed TV subcarrier from the TV diversity combiner.

In addition to providing demodulation of the TV subcarrier, the TV-FM demodu-

lator generates the vertical synchronizing signal. The video output of this unit is ap-

plied to the horizontal separator, to a monitor scope, and to the display and video am-

plifier.

The outputs of the horizontal separator and the vertical sync generator are applied

to the sawtooth and deflection unit. In turn, the sawtooth and deflection unit provides

the vertical and horizontal deflection currents for the deflection yoke of the kinescope.

The TV subcarrier is recorded directly on a magnetic tape.

b. Display and Video Amplifier

The function of the display and video amplifier is to provide final amplification of

the TV video and to present the TV picture on a display panel. This display panel in-

cludes indicator lamps whose operation is controlled by inputs from the other data

processing and display components to provide the picture identification data. A camera
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mount is used to permit taking both 35-mm and polaroid pictures simultaneously. The

mount is positioned so that the real-time indicator is in the field-of-view of the 35-ram

camera.

c. Sawtooth and Deflection Amplifier

This unit supplies both the horizontal and vertical deflection waveforms and the

horizontal and vertical blanking pulses to the kinescope.

d. Horizontal Sync Separator

This unit provides synchronizing pulses to the horizontal sawtooth deflection cir-

cuitry. These pulses are in phase and locked to the video horizontal rate. The oper-

ation of the sync separator is unique in that it provides these synchronizing pulses in

response to video signals which are random in nature, that is, the horizontal rate or

horizontal signal is noncoherent from frame to frame even though the frequency within

each frame is the same.

e. TV-FM Demodulator

The input to the TV-FM demodulator is the modulated TV subcarrier. This unit

separates the video signal from the subcarrier and provides several outputs, one of

which is the video signal for the kinescope video circuits. Other outputs are (1) a con-

trol signal for the camera shutter, (2) a vertical synchronizing signal to the kinescope

deflection circuits, and (3) a video subcarrier pulse to the tape and computer control.

A pulse-counting type of demodulator was used because of its stability and its linear

operating characteristics. This type of demodulator has been used successfully on

commercial video-tape recorders in which the frequency-spectrum relationships of

the video signal, the subcarrier, and their modulation products are the same as those

in the TIROS TV-pieture subsystem.

f. Tape and Computer Control

On the TIROS X program, this unit provides the source signals for frame identi-

fication and acts as a central control for the two tape recorders.

g. Sun-Angle Computer Control

Though sun-angle data is not produced by the north-indicator subsystem on TIROS

X, the sun-angle computer control is part of the operating set-up and provides index

data (consisting of the frame number, the camera number, and the picture mode) di-

rectly to the monitor for immediate display with the TV pictures. It also provides this

index data to the tape recorders for the recorded pictures. During playback of the
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instrumentation recorder, the sun-anglecomputer provides for either (1) sequential
display of all video frames or (2) selectionof a single video frame for display.

h. Monitor Control

The monitor control provides switches and relays for controlling the inputs of the

data-processing and display components, and for turning on and turning off the 32-volt

power supply, the three 300-volt power supplies, the high-voltage power supply, and

the sun-angle computer power supply.

i. Calibrator

This unit generates a video test pattern and an 85-kc, frequency-modulated sub-

carrier, which are used to test the TV subsystem. Simulated sun-angle bursts are

also generated and used to test the sun-angle computer.

j. Digital Time-Measuring Device

The functions of the Digital Time-Measuring Device (DTMD) are (1) to measure

and identify the time intervalbetweensequential trigger pulses and (2) to drive a

tape punch which presents the time interval in teletype code on paper tape. This unit

has an automatic start and stop capability.

k. Attitude-Pulse Selector

The attitude-pulse selector receives the "raw" attitude signals from the Sanborn

recorder, selects and re-forms the valid attitude pulses while blocking any spurious

pulses, and applies the valid attitude pulses to the DTMD.

I. Quick-Look Demodulator

(Not used on TIROS X)

m. Infrared Buffer

(Not used on TIROS X)

n. Tape Recorders

Seven-channel, Ampex tape recorders (Series FR-100A) have been used on TIROS

programs since TIROS IV. These recorders are of standard commercial design and

are used to record the received video. (For TIROS satellites containing IR equipment,

these recorders also record the composite IR signal, the IR events signal, and the

summed AGC voltages of the IR receivers.)
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o. Events Recorder

A 20-channei, Esterline-Angus events recorder (Model AW) is used to provide

ON-OFF indications versus time, on a paper chart. These indications provide (1) a

direct, real-time record of the command program, for the purpose of checking either

equipment malfunctions or operator errors prior to a pass and (2) a permanent record

of the commands sent during a pass. The recorder is equipped with both manual and

automatic start features. Manual start is used when trouble-shooting and maintenance

operations are necessary at the ground stations. Automatic operation is used during

the normal operation of the equipment.

p. Telemetry Recorder

A two-channel, Sanborn paper-chart recorder is used to provide a permanent

record of the time-referenced output from the telemetry receivers. The data recorded

includes "housekeeping" telemetry, solar-aspect indicator data, MBC switch position

data, etc.

5. CDA - SCAMA Interface Equipment

a. General

Figure III-5 shows the CDA-SCAMA interface equipment as used for the TIROS X

program. The Frequency Shifter Unit (FSU) was added for this program to shift the

beacon No. 2 subcarrier from 1300 cps to 2300 eps, permitting it to be mixed in the

CDA Data Output Unit (CDOU) with the beacon No. 1 subcarrier, which is also at 1300

cps, for transmission over a SCAMA line to TTCC.

Test signals, including a series of tuning-fork-controlled tones from the telem-

etry calibrator, can also be placed on the SCAMA lines for calibration or checking

purposes.

For the TIROS X operations, the Beacon Data Control Unit (BDCU) functions as a

routing device through which the beacon subcarriers are applied. The beacon No. 1

subcarrier is applied to the BDCU and sent directly to the CDOU and, at the same time,

to subcarrier discriminator No. 2, where it is demodulated for recording on the San-

born recorder.

The beacon No. 2 subcarrier is simultaneously applied (I) through the BDCtl to

the FSU, and (2) directly to the FSU, before being supplied to the CDOU. (The handling

of the beacon No. 2 subcarrier is detailed in the following description of the FSU.)
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In the case of beacon No. 1 data, selection of the data to be transmitted is ac-

complished at the CDOU by means of an input switch which permits the selection of

(1) beacon No. 1 data from beacon receiver No. 1,

(2) beacon No. 1 data from the magnetic tape recorder No. 1, or

(3) a 1300-cps calibration signal from the telemetry calibration unit.

In the case of beacon No. 2 data, this switching function is handled in the FSU.

Bandpass filters in the CDOU permit the selection of the beacon subcarriers. A

resistive network provides proper impedance matching for the outputs of the bandpass

filters, and allows the outputs of the selected pair of filters to be summed.

Since the beacon-subearrier signals are attenuated by the bandpass filters and

matching-impedance networks, the combined filter outputs are amplified to attain a

0-dbm level for feeding the input to the SCAMA circuits. For this purpose, the un-

used audio amplifier section on each of the two beacon receivers is connected as a

buffer amplifier between the output of each of the two pairs of filters, and the input to

the SCAMA circuits. These amplifiers also provide a gain control for setting proper

output level and a meter for monitoring that output level.

A QT-30 tone transmitter is also provided, for the output of each pair of filters,

to FSK-modulate a 1785-cps subcarrier with a time code (2-pps bit rate). This signal

is combined with the beacon signals at the output of the CDOU.

Program events data signals are taken from the Esterline-Angus events recorder

and applied to a bank of 20 relays which, in turn, provides contact closures to a

scanner-transmitter unit. This unit multiplexes the relay closure data into a signal

whicb is FSK-modulated onto a 2295-cps subcarrier by a QT-30 tone transmitter for

transmission over a SCAMA line.

b. F SU

The FSU comprises a 2300-cps voltage-controlled oscillator (VCO), a power sup-

ply, and associated circuitry. As noted earlier, the beacon No. 2 subcarrier is ap-

plied both through the BDOU to the FSU, and directly to the FSU.

Figure III-6 is a diagram of the switching arrangement in the FSU. The FSU is

equipped with two switches: S1 and $2. S1 provides for switching between the SlllFT

mode, i.e., TIROS X operations, and the NORMAIJ mode, i.e., TIROS IX operations.

When S1 is in the NORMAL mode, the beacon No. 2 signal applied through the

BDCU bypasses the VCO and is sent to SCD No. 4 and thence to the Sanborn recorder.
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Figure III-6. Switching Arrangement for the Frequency Shifter Unit

The beacon No. 2 signal simultaneously applied directly to the FSU is also unaffected
by the VCO and is routed to the CDOU.

When $1 is in the SHIFT mode, the beacon No. 2 signal applied through the BDCU

is cut off in the FSU. The signal simultaneously applied directly to the FSU is routed

to SCD No. 4; the resultant dc signal is sent to the Sanborn recorder and, at the same

time, to the VCO, where it is converted to a 2300-cps signal and from which it is sent
to the CDOU.

When $1 is in the SHIFT mode, switch $2 permits the selection of the following
direct inputs to the FSU:

(1) beacon No. 2 data from beacon receiver No. 2,

(2) beacon No. 2 data from magnetic tape recorder No. 1,
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(3) a 1300-cps calibration signal from the telemetry calibrator, or

(4) a 2300-cps calibration signal from the telemetry calibrator.

]'he beacon No. 2 data, whether from the receiver or from the magnetic tape re-

corder, is applied first through SCD No. 4 (where the signal is demodulated), then

simultaneously (1) to the Sanborn recorder and (2) through the VCO (where the d-c

signal is changed to a 2300-cps signal) to the CDOU.

The 1300-cps calibrator signal is applied to the SCD and, as a demodulated sig-

nal, to the VCO to permit calibration of these units.

The 2300-cps calibration signal is immediately routed out of the FSU, bypassing

the VCO, and is applied to the CDOU for calibration of the SCAMA circuits.
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PART IV. FIELD OPERATIONS

SECTION I. GROUND STATIONS

A. GENERAL

Field operations in tracking and commanding the TIROS X satellite and in receiving,

storing, and processing retrieved data were similar to those performed for preceding

TIROS satellites. The two primary Command and Data Acquisition stations on the

TIROS X program were located at Wallops Island, Virginia, and Fairbanks, Alaska.

As on previous TIROS programs, the Princeton ground station at the AED Space

Center, Princeton, New Jersey, served as a back-up facility. Operations at all

TIROS CDA stations were satisfactory for the TIROS X launch.

B. TIROS TECHN ICAL CONTROL CE NTER (TTCC)

AED personnel assigned to TTCC for the launch assisted and advised TTCC oper-

ating personnel in all operational-phase activities as required. In addition, technical

support of equipment was provided, with operational support concentrated in the

area of attitude control during the turn-around maneuver.

C. WALLOPS ISLAND GROUND STATION

Spacecraft programming at the Wallops Island facility (which was being used to
interrogate TIROS VII, TIROS VIII, and TIROS IX) was reduced on June 19 in order

to permit the ground station to participate in TIROS X pre-launch exercises.

On June 28, it was necessary to remove the General Bronze 235-Mc antenna from

service due to difficulty with the elevation-drive system. However, the difficulty

was soon corrected, and the antenna was returned to service later the same day.

During the week prior to launch, some problems had been experienced with high-

beam reception from the Kennedy 136-Mc antenna. The trouble was attributed to

the coaxial switch, which was replaced on June 30.

On June 28, the installation of the telemetry-translator equipment for TIROS X was

completed, and the unit was test-operated. The station was then considered in
readiness for the TIROS X launch.
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D. FAIRBANKS GROUND STATION

The programming effort on TIROS VII, VII-I, and IX was reduced at the Fairbanks,

Alaska.. _ground station_ .........._n .l,m,_ 1Q__'_...._u,_l'_ to v_ u,_................. _u_ _ _a_lon to participate in

the TIROS X pre-launch exercises.

On June 25, the installation of the telemetry-translator equipment for TIROS X was

completed and successfully test-operated.

All operations at the Fairbanks station were conducted on a satisfactory basis. The

high-power transmitters at this station were used to command the successful spin-

down of TIROS X on orbit 002 and, thereafter, to command various phases of the

satellite turn-around maneuver and cbeckout programs.

E. PRINCETON GROUND STATION

The Princeton ground station, located at the AED facility near Princeton, New Jersey,

was placed in readiness to support the TIROS X launch on June 29, 1965o Mechanical

difficulty with the antenna system at the Princeton station had been experienced late

in June. However, the facility was again operational on June 28.
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SECTION II. LAUNCH OPERATIONS AT CAPE KENNEDY

LAUNCH SITE

Spacecraft OT-1 was shipped, fully qualified, to the Eastern Test Range (ETR) on

June 14 along with the RF model and the spacecraft's associated handling and test

equipment; the Go, No-Go van had been shipped to the ETR on June 11. Spacecraft
OT-1 and the RF model were received at the ETR on June 15.

Shortly thereafter, the RF model was checked out with satisfactory results, and

spacecraft OT-1 was subjected to a detailed Go, No-Go test. All phases of this

test were completed with good results, except for the check of the MBC coil,

which indicated the coil to be "open". The hat assembly, containing the MBC

coil, was removed from the spacecraft, and an investigation showed one of the

coil ends to be "open" at the point where it connected to the terminal board located

on the coil frame.

On June 16, the coil connection was repaired, and it was inspected and approved by

AED and NASA representatives. On June 17, a NASA quality-control engineer

inspected and approved the repaired connection, and the repaired area was repotted.

The hat assembly was then reinstalled on the spacecraft baseplate.

On June 17, the RF model was mated to the inert third stage of the launch vehicle.

On the following day, the RF model and the inert third stage were taken to Launch

Pad 17B for mating to the second stage of the launch vehicle. In addition, the MBC

coil on spacecraft OT-1 was checked out, and a complete Task 4 check was success-

fully performed. On June 19, the launch-vehicle fairing was installed and an all-

systems RF-interference test was conducted using the RF model, both with the

gantry around the vehicle and with the gantry away from the vehicle. During these

checks, the spacecraft beacon and TV transmitter were observed to interfere with

the third-stage telemetry package.

On June 21, an on-stand optical check, a full Task 4 check, and an abbreviated

Task 4 check were successfully performed on the spacecraft. On June 22, another

Task 4 check was successfully performed. In addition, the RF model was remated

to the inert third stage for an RF-interference check with the third-stage telemetry

package (which had been modified since the tests made on June 19). The next day,

a Task 4 check was performed on the spacecraft, and the third-stage telemetry

package was installed on the third stage of the launch vehicle.
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OnJune 24, another Task 4 checkwas successfully performed and the spacecraft was
delivered to the DouglasAircraft Company(DAC)o On June 26, spacecraftOT-1 was
mated to the third stageof the launchvehicle andthe combinedassemblywasbalanced.
(This operation occurred 5 davs after th_ nvicrinnlhr_r.harh,la,qt_,_. however, *'
postponementis attributable to the additional efforts related to the installation of the
third-stage telemetry packageby NASAand DAC.)

OnJune 27, the combinedspacecraft andmodified third-stage assembly wasmated
with the secondstageof the launchvehicle, and an on-standoptical checkwas started.
However, RF interference (attributed to reflected beaconsignals) was notedon the
commandreceivers, anddummy loadshad to be installed in place of three of the four
elements of the spacecraft's transmitting antennain order to enableeffective pro-
gramming. With the dummy loads in place, the optical checkand a Task 4 check
were pelluvmcu with goodresults. Thereafter, a special series of tests were con-
ducted whichshowedthe power outputs from the transmitting antennas,the command-
receiver sensitivity, and command-receiver bandwidthall to be normal.

The "F-1 Day" effort was started on June 28. The fairing was installed andthe gantry
was removed. However, the interference observedonJune 27was evenmore pro-
nouncedwith the fairing installed, and the spacecraft could not be commanded.
Accordingly, the gantry was returned andthe fairing removed. After testing showed
that command-receiver AGC voltage could be varied by touching the spacecraft's
transmitting antennasandvarious parts of the third-stage rocket and telemetry
package,a special series of tests were conductedwith the spacecraft separated
from the third-stage rocket. These tests showedthat, with the spacecraft raised
6 inches abovethe third stage, the spacecraft could be commandedwithout difficulty.
Uponcompletion of these tests, the spacecraft was returned to HangerAE andanother
series of tests was conductedwhich provided a further demonstration of the effect
producedby the proximity of metal (reflective) surfaces on the command-receiver
AGCvoltages.

OnJune 29, at NASArsrequest, the spacecraft hat was removed and a notch filter,
similar to thoseused onTIROSVIII andIX, was installed in the coaxial cabling
usedto connectthe receiving antennato the commandreceivers. Testing of this

filter, which was a spare unit for spacecraft OT-3 and had been installed on the RF

model, showed that it attenuated 136.65-Mc signals by 26.5 db, while attenuating

signals at the command frequency by only 1 db. After the filter installation and

checkout was completed, the spacecraft hat was reinstalled on the baseplate and the

command sensitivity was checked with good results. Thereafter, a complete Task 4

check was performed with the spacecraft mounted on a metal workstand; satisfactory

results were achieved. Then the spacecraft was transported to the launch pad and

remated to the third-stage. A complete Task 4 cheek was then performed; :ill results

were good except the operation of clock No. 1, which did not alarm on time. After

this, the fairing was installed and a second Task 4 check was started. Normal
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commandwasachieveduntil the gantry was removed; then the spacecraft could no
longer be commanded. Whenthe gantry was returned, normal commandingwas
again achieved;however, it wasdecidedto discontinue the launcheffort until the
following day.

On June 30, the possibility of modifying thefairing to reducethe interference
problem wasdiscussedbut rejected, and "F-1 Day" testing was started at 11:00
AM EST. A Test 4 checkwas performed with goodresults, except that both clocks
alarmed a few minutes late. (This anomalywas attributed to limitations in the
modulator of the NASA/GoddardLaunchOperationstransmitter that wasused in
this test, which precluded good-quality clockset pulses.)

The "F-ODay" checkswere started onJuly 1 at 6:00AM EST. Spacecraftchecks
were started at 11:30AM, and a completeTask 4 checkwas performed with excel-
lent results. Shortly thereafter, the fairing was reinstalled on the launchvehicle.
At T-15 minutes, the spacecraft OT-1 wasaddressedand the "Direct Camera No. 1"
commandwas usedto commandthe spacecraft. In response, the beacontransmitters
turned ONand four direct pictures were requestedand the appropriate video signals
received.

At 11:07PM EST, onJuly 1, TIROSX wassuccessfully launchedfrom CapeKennedy,
andinjected into a near-polar, sun-synchronousorbit.
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APPENDIX

SOLAR-CELL ARRAY POWER PREDICTION

I. INTRODUCTION

The power-prediction procedure employed for the spacecraft OT-1 solar array was
based on:

(1) the development of secondary standard cells using a color filter wheel and

primary standard cells,

(2) the performance of array measurements in sunlight (in New Jersey), with

linear extrapolation of the readings to outer space values, and

(3) the use of these measurements and extrapolations, plus other inputs, with a

computer program to develop a power prediction.

A color filter wheel calibrated by means of four primary standard cells was used to

establish six secondary standard cells. The six secondary standards were mounted

on a panel and positioned normal to the sun. A digital voltmeter was placed across a 1-

ohm shunt and used with a switching arrangement to obtain readings of the lsc of each
standard cell.

II. ARRAY MEASUREMENTS

The solar-cell array was placed on an adjustable frame so that the top-hat array and
each side panel could, in turn, be positioned normal to the sun. The area under test

was exposed to the sun and all other units were shaded. Immediately prior to the test,

two different temperature readings of the top-hat array were taken, and the measured
values were 25°C and 27°C.

A complete I-V curve was drawn for each unit and the associated isolation diodes; and

the curve for the top-hat, as shown in Figure A-l, was taken as representative of the
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entire array. The values obtained in the array measurements were linearly extrap-

olated to outer-space conditions by means of the following equations:

l.+c(> = ls(-n_ F x, and

lscros
Fx = Iscm s

where

lS¢'_)

[ :_'CHi

t" x

is the short-circuit current of the solar array extrapolated to outer

space,

is the short-circuit current of the solar array as measured for the

earth,

is the extrapolation factor,
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IscOS is the outer-space value for the short-circuit current of a secondary

standard cell, as calibrated by means of the color filter wheel measure-

ments, and

ISCmS is the short-circuit current of the secondary standard cell as measured
for the earth.

Fx for the top-hat array was determined to be 1. 161; the average Px for the side panels

was determined to be 1. 164. Using these values, a weighted average of the lsco values

per solar-cell string was obtained. This value was 54.9 rna.

The Yoc for each unit of the array was measured and corrected for outer-space con-

ditions by a correction factor which accounted for the light-intensity difference be-

tween terrestrial and outer space conditions. This correction factor was obtained

using the following relationship:

where

K

Io

[SC

Voc = KIn
Io

is the constant of proportionality and

is the saturation current.

Each of the six P-on-N standard cells were measured under two different light levels,

where Isc I and lsc2 and Vocl and Voc 2 are the respective short-circuit currents and

open-circuit voltages at the two light levels.

From the above equation then,

Voc 1 -Voc 2 = K In
Iscl

lsc2

from which the value K was calculated.

-2
Using K = 2.94 x 10 as the average value for the six secondary standard cells, a

value AVoc was obtained for the top-hat array and for each side panel, where lscllsc 2

is Fx. For the top-hat array, AVoc was determined to be 0.4 volt, and this correction

is included in the I-V curve for the top-hat array as shown in Figure A-1.
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Theweightedaverageof the corrected to_.valuesper string was determined to .')e
45.8 volts. The voc value per cell, i. e., 0.57 volt, was obtained by dividing the

average Woc for the string by the number of cells in the string (45.8/80).

The value for the voc per cell ferms one intercept of the I-V curve for a singlece'l.

The other interceptwas obtained by dividing"the Isco value for the array by the nui_-

ber of strings (2432 ma/44) and was determined to be approximately 55 ina. The I--V

curve for the standard cell,therefore, is mathematically identicalto thatof the top--

hat array, and is linearlyproportioned to accommodate the average values for l_c

and v<>,..

III. USE OF A COMPUTER FOR POWER PREDICTION

A computer program was used to facilitate the power prediction, because the solar-

cell array operating in space experiences a variety of gamma angles, each with as-

sociated effects on (1) the total cell area exposed to the sun at the particular mome,_.t

and (2) the consequent temperature conditions. At each given gamma angle, the

current contributions from panels at varied angles were computed and summed to

yield a value for the total array current. The use of the computer technique provided

an accurate and efficient meal, s of performing this procedure.

The factors included as inputs for the computer program were as follows:

(I) the I-V curve of an average cell under outer-space conditions,

(2) gamma angle,

(3) temperature,

(4) the effect of the angle of incidence of the sun's rays on the current produced

by the exposed panels, and

15) the intensity of the sun's rays as affected by distance from the sun. (The

computer was originally programmed for 1 astronomical unit; and, in anticipa-

tion of a mid-July launch date, a correction of 0. 968 was applied. )

Table A-1 is a summary of the results obtained with the computer program. The

data included in this summary is presented as current and voltage values at the

equilibrium temperature corresponding to a specific sun angle. * Figure A-2 presents

a family of curves derived from this data, indicating the current profile for various

gamma- angle values.

*The tolerance applied to the power-prediction values was an r. m. s. value of incli-
viduil system errors.
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